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ABSTRACT

VISUALIZING THE
UNIVERSAL DATA CUBE

SEPTEMBER 2014

CURRAN KELLEHER

B.Sc., UNIVERSITY OF MASSACHUSETTS LOWELL

M.Sc., UNIVERSITY OF MASSACHUSETTS LOWELL

Ph.D., UNIVERSITY OF MASSACHUSETTS LOWELL

Directed by: Professor Dr. Haim Levkowitz

The field of data visualization is lacking open tools that support easily developing

and using production quality interactive visualizations. Particularly, there is a need

for reusable solutions for (1) well known visualization and interaction techniques (2)

authoring and sharing visualizations with multiple linked views, and (3) describing

existing data such that many data sets can be easily integrated and visualized. This

dissertation introduces novel data structures and algorithms for interactive visualiza-

tions of data from many sources, addressing these three issues.
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CHAPTER 1

INTRODUCTION

The field of data visualization is lacking open tools that support easily developing

and using production quality interactive visualizations. While powerful visualization

and data analysis technologies exist such as Tableau [68], Spotfire [78], SAS Visual

Analytics [79] and Wolfram Alpha [101], they cannot be freely leveraged as tools

by researchers or components for application developers due to their proprietary na-

ture. The primary open source tool for Web-based data visualization is D3.js [19],

a JavaScript library that provides low level primitives for constructing interactive

visualizations. Creating visualizations using D3 typically involves copying one of the

many visualization examples available, then tailoring it to work with the application-

specific tasks and data at hand. Though there have been many attempts at creating

generalized visualization environments using D3, none of them rival the power of

commercial visualization packages.

Open Source projects often serve as a bridge between academic theory and profes-

sional practice. For example, Hadoop has made parallel computation more accessible,

and PostgreSQL has served as a platform to bring advanced database techniques into

practice. D3 has served as a bridge between data visualization theory and practice

largely via the self-contained examples found in the D3 Example Gallery [21]. How-

ever, most D3 examples are not reusable solutions but rather one-off implementations

tailored to a specific data set and task. There is a need for an approach to generalizing

D3 examples that results in reusable interactive visualization components. Chapter 1,

“Reactive Visualizations” introduces a solution for generalizing existing visualization
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examples using concepts from functional reactive programming and the Model View

Controller paradigm.

Some of the most common requirements of visualization applications today are

that they have multiple linked views, can be developed collaboratively, and can be

easily shared. Having linked views means that interactions in one visualization cause

some change in other visualizations on the page. Being developed collaboratively

means that many people in a group are all able to make changes that can subsequently

be leveraged by others in future work. Being easily shared means that the resulting

visualizations can be embedded within presentations, reports, or third party Web

sites. Chapter 2 “Collaborative Visual Data Exploration” discusses an approach to

collaboration, history and linked views that leverages reactive visualizations.

Much of the work of a data scientist or analyst is dedicated to curating and trans-

forming data such that they can perform their analyses. Many data sets, in aggregated

form, can be transformed into data cube using binned aggregation [100]. Data cubes

are data structures based on dimensions and measures. Dimensions contain (poten-

tially hierarchical) sets of distinct entities or concepts. Measures are quantitative

properties that represent aggregates (such as sum or average). Many data cube di-

mensions, such as Space, Time, Gender and Industry, are “universal” in that they

transcend any single data set. Observations (sometimes called facts) within a data

cube assign concrete numeric values to measures of the data cube corresponding to

the cartesian product of members from each dimension. These dimensions may be

referenced by different data sets using different identifiers, and data sets may present

the same measure with a different scale or attribute naming convention. Chapter 3

“The Universal Data Cube” introduces a collection of data structures and algorithms

for integrating and visualizing many data sets.

Taken together, the contributions of this dissertation make inroads toward an

open platform for complex data visualization. The hope is that these technologies

2



can continue to evolve with support from the global Open Source community and can

evolve into a mature platform for advanced data visualization applications.

1.1 Vision

The envisioned data representation and visualization framework can serve as a

digital telescope into the universe of phenomena on Earth via publicly available data.

For example, consider data sources such as the United Nations, the US Census, the

US Bureau of Labor Statistics, or the US Centers for Disease Control. These orga-

nizations and hundreds of others around the world provide publicly available data

about various topics including population statistics, public health, distribution of

wealth, quality of life, economics, the environment, and many others. By unifying

these data sources and providing users with tools to explore them visually, a deeper

understanding of the world can be gleaned by anyone through the lens of data.

There is immense potential value in data that is not being realized. The ability

to visually explore data lends itself to applications in education, journalism, and

public policy. Especially in the era of “Big Data,” it is increasingly valuable for

organizations and individuals to have the ability to analyze large quantities of data

that come from various sources and vary across time, space, and other dimensions. In

addition, publicly available data can provide context for business-centric, proprietary

data analysis activities.

While publicly available data sets are available on the Web, it is difficult to realize

their full value in practice. The difficulty stems from the fact that they are made

available using numerous formats and protocols. The heterogeneity of formats and

protocols used makes it difficult to combine and analyze data sets together and hinders

the development of analysis and visualization tools. For example, some data sets are

made available as CSV files, Excel spreadsheets (as shown in figure 4.8), or must be

navigated using a Web-based user interface (as shown in figures 1.1, 1.2, 1.3 and 1.4).
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Figure 1.1. The Web-based interface provided for navigating the United Nations
Millennium Development Goals Indicator data sets [111]. This is one example of the
variety of formats and protocols used for making data available on the Web.
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Figure 1.2. The Web-based interface for downloading data from the CIA World Fact-
book [3]. A data download link is provided that yields a text file using a nonstandard
table format. This is a second example of the variety of formats and protocols used
for making data available on the Web.
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Figure 1.3. The Web-based interface for downloading data harvested by the Gap-
Minder project [58]. A data download link is provided for each indicator that yields
an Excel spreadsheet hosted using Google Docs.

Sometimes visualization interfaces are provided for data published online, such as

in figure 1.5, but these tools are typically extremely limited in scope and hard-coded

to the data set at hand. With the tools available today such as D3.js, creation of

Web-based interactive data visualizations involves hard coding one-off projects to a

particular data set. Ideally, anyone should be able to apply interactive visualiza-

tion techniques to data easily. This dissertation focuses on the challenges in making

this a reality and offers a solution based on the data cube concept. The proposed

framework reduces the effort required to create Web-based data visualizations by

linking reusable visualization components with data sets within the proposed data

representation framework, which is based on the data cube model.

Public data tends to be particularly well suited to the data cube model because

it typically contains measures about people (or byproducts of human activities) dis-

6



Figure 1.4. The Web-based pivot table user interface for downloading data from the
US Centers for Disease Control about births to mothers under age 20 by demographic
and year [54]. The product powering this interface is the Beyond 20/20 Web Data
Server [1]. In this interface a “download” button is provided that yields data in CSV
(Comma Separated Value) format.

tributed across time, space (geographic regions), and other dimensions such as gender

or age range. For example, the data available in the GapMinder visualization tool

contains measures (such as “number of adults with HIV/AIDS” and “child mor-

tality”) aggregated across countries and years [58]. This partitioning of space into

countries and time into years is one choice of levels in the space and time hierarchies,

but the data cube model is more general in that it can support multiple levels of

detail in both the Space dimension (e.g., Continents, Countries, States, Counties,

and Metropolitan Areas) and the Time dimension (e.g., millennia, centuries, years,

7



Figure 1.5. An interactive visualization of bachelors degree statistics provided by
the National Science Foundation site [55]. This is an example of an extremely limited
visualization tool provided along with a data set.
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months, days, hours and minutes). Therefore, any data sets that contain measures

(also called statistics, indicators, or metrics) aggregated along any resolution of time

and space can be modeled as data cubes.

When multiple data sets are modeled as data cubes, they can be integrated into a

single structure. Based on the common dimensions and measures shared between data

sets, an integrated heterogeneous data cube structure can be created from an arbitrary

number of data sets from multiple sources. Interactive visualization techniques can

be applied to this integrated structure, yielding fundamentally new ways of exploring

and presenting multiple data sets.

To motivate research in data cube integration and visualization, one must con-

sider a larger picture. The data available today can paint a vivid picture of the world

if it is exposed in a meaningful way. Data visualization augments human cognition

by enabling users to glean knowledge from data using visual perception rather than

detailed mental analysis [25]. Data cubes provide a well structured, common repre-

sentation that captures the essence of many data sets. Data visualization augments

human cognition by offloading data analysis tasks to tasks of visual perception. The

synthesis of data with visualization through data cubes can lead to a technology

platform that changes the world by bringing the power of data visualization to the

public.

1.2 Challenges

The main problem this work addresses is the gap between heterogeneous data

sets and information visualization software. The reality of the current data visualiza-

tion landscape contains many disparate data sets, data formats, visualization tools

(specific implementations), and visualization techniques (abstract conceptual visual-

ization approaches). The problem with this situation is that it requires an immense

amount of manual work to establish a complete pipeline from any given data source

9



Figure 1.6. The fragmentation of data and visualization.

Figure 1.7. Bridging the gulf between data and visualizations.

to an instantiation of a visualization technique. This situation is summarized in figure

1.6.

An ideal solution to this problem would allow any target data set to be visualized

using any target visualization technique. For example, the task “Visualize the US

Census Population Statistics on a Choropleth Map” should be possible to execute

in a straightforward way, ideally by a simple process in which the target data set

is selected (US Census Population Statistics), the target visualization technique is

selected (Choropleth Map), and the mapping from the data set to the visualization

technique is configured (total population maps to region color by a selected color

scale). This ideal is summarized in figure 1.7.

10



Figure 1.8. Our proposed solution; introduce generic intermediate representations
conducive to data visualization.

The proposed solution to address the gulf between data sets and visualization

techniques involves the introduction of a generic and powerful intermediate data rep-

resentation. The generic data representation should be capable of representing most

data sets. For this the data cube concept was chosen as a foundation, as it captures

the essential structure of many data sets. This solution is summarized in figure 1.8.

1.3 Application Areas

Imagine what it would be like if any person could readily access or construct

interactive visualizations of data. Interactive data visualization has relevance to many

application areas including, but not limited to, education, journalism, and big data

analytics.

Educational material is ripe with opportunity for augmentation by interactive

visualizations. For example, consider the next generation of textbooks as eBooks

running on tablets. Textbooks covering historical trends can use visualization to

represent data about, for example, the distribution of various demographics across

the Earth and how they have shifted over centuries. Economics courses could use

interactive visualizations of global economic data to help students better understand

socioeconomic dynamics. Environmental studies can include visualizations of data

11



on climate and pollution. Medical studies can take advantage of public health data.

There is no end to the potential applications of public data visualization in education.

Journalism requires an in-depth understanding of stories as they evolve. Public

data can provide context for those stories, and interactive visualizations of relevant

data can be placed in digital publications alongside article text. This places the power

of interactive visualization in the hands of readers. Visualizations are already being

used for this purpose today by publishers such as the New York Times and the Boston

Globe [124].

Big data analytics is a fast growing area of active research and development. The

proposed data modeling and visualization approach has relevance for big data ana-

lytics because the data cube construct is a particularly well suited structure for pre-

senting summary queries executed across large distributed data stores. For example,

Facebook developed a visualization system based on data cubes and interactive spec-

ification of slices [138]. In this system, a distributed in-memory database developed

at Facebook is interactively queried based on user-defined filters that compute data

cube aggregates of real-time data on demand. LinkedIn is taking a similar approach

to present real-time aggregated data to users through visualizations [136].
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CHAPTER 2

REACTIVE VISUALIZATIONS

Managing complex data flows and update patterns is one of the most difficult

challenges in interactive data visualization. Constructing interactive visualizations

with multiple linked views can be a daunting task. Functional reactive programming

provides approaches for specifying data dependency graphs declaratively and main-

taining them automatically. Functional reactive programming can be combined with

the Model View Controller (MVC) paradigm to provide reactive models, an effec-

tive abstraction that supports construction of complex interactive data visualization

systems.

Even with the wealth of visualization toolkits and libraries that exist today, there

is a need for an abstraction that addresses the core issue of managing complex data

flows and update propagation patterns. In this chapter, a novel approach for devel-

oping reusable interactive visualization components using reactive models (reactive

visualizations) is introduced. A pseudocode implementation of reactive models is

presented in appendix A. A JavaScript implementation of reactive models has been

released as the open source ModelJS project [88]. The effectiveness of the proposed

approach is demonstrated in several visualization examples including multiple linked

views.

2.1 Related Work

The first attempt at a systematic formalization of data visualization was Jacques

Bertin’s “Semiology of Graphics” [13]. In this work, Bertin relates data types to

13



visual marks and channels in a coherent system that takes visual perception into

account. Bertin’s work has influenced many future theoretical underpinnings of vi-

sualization, including Leland Wilkinson’s “Grammar of Graphics” [155] and Jock

Mackinlay’s APT (A Presentation Tool) system [105], which led to the development

of the commercial visualization package Tableau [68].

Interactions within data visualization environments have been well studied. Becker

et al. investigated brushing in scatter plots [10]. Shneiderman et al. explored dy-

namic queries in general and how these operations fit into a larger context of visual

information seeking [129]. Ward introduced a visualization system based on multi-

ple linked views with direct manipulation techniques including brushing and linking

[150]. Anselin discussed how interactive visualization systems with linked views can

be applied to Geographic Information Systems [7]. Yi et al. conducted a thorough

survey of existing taxonomies for visualization and interactions and developed a set

of generalized classes of interactions for visualization [158].

Much work has been done regarding interactive visualization of data cubes. Stolte

et al. introduced a formalism for defining multi-scale visualizations of data cubes

throughout their work on the Polaris system [135] [134] [133]. Cuzzocrea et al. sur-

veyed the area of data cube visualization in depth [38]. Mansmann coined the term

“Visual OLAP” and framed it as a fundamentally new paradigm for exploring multi-

dimensional aggregates [108]. Scotch et al. developed and evaluated SOVAT, a Spatial

OLAP visualization and analysis tool applied to community health assessments [128]

[127]. Techapichetvanich et al. explored how visualization interactions pertain to data

cubes in particular [139]. Sifer et al. introduced a visual interface using coordinated

dimension hierarchies for OLAP cubes [132]. Several interactive “Big Data” visual-

ization systems have been introduced that use the data cube structure [98] [100].

Interactions within data visualization environments have been well studied. Becker

et al. investigated brushing in scatter plots [10]. Shneiderman et al. explored dy-
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namic queries in general and how these operations fit into a larger context of visual

information seeking [129]. Ward introduced a visualization system based on multi-

ple linked views with direct manipulation techniques including brushing and linking

[150]. Anselin discussed how interactive visualization systems with linked views can

be applied to Geographic Information Systems [7]. Yi et al. conducted a thorough

survey of existing taxonomies for visualization and interactions and developed a set

of generalized classes of interactions for visualization [158].

The World Wide Web has evolved to become a full-fledged application develop-

ment platform. HTML5 is the latest set of standards and Application Program-

ming Interfaces (APIs) from the World Wide Web Consortium (W3C) that define

the capabilities of modern Web browsers [73]. HTML5 applications are able to run

across multiple platforms (albeit requiring some effort from developers). HTML5 has

eclipsed Java Applets and Flash in fulfilling the dream of “write once, run anywhere.”

HTML5 contains three graphics technologies that can support interactive Web-based

visualizations: the Document Object Model (DOM), Canvas [56], Scalable Vector

Graphics (SVG) [42], and WebGL [109].

D3.js is a flexible and powerful visualization library that uses SVG and has a strong

community of users [19]. At its core, D3 is a DOM manipulation library with heavy

use of functional programming. D3 allows concise declarative statements to define

the core logic of visualizations. D3 provides additional APIs for performing common

visualization tasks such as defining and using scales, generating labeled axes, and

computing layouts from graphs and trees. D3 is at the center of a vibrant developer

ecosystem and has seen wide adoption in industry. There are plentiful examples of

D3.js usage for creating visualizations [21]. Many supporting libraries have been cre-

ated including NVD3 reusable charts, Chart.js for composing visualization elements,

Crossfilter.js for interactive multidimensional filtering, and DC.js for multiple linked
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views. Other reusable chart libraries based on D3 include Dimple, RAW, VEGA,

reD3 and Forio Contour.

Interactive data visualizations can be linked together such that interactions in

one visualization cause updates in another visualization. This technique is referred

to as “multiple linked views” [122] and “brushing and linking” [87, 8]. This tech-

nique overcomes limitations of single visualizations by supporting exploration of the

data through interaction. More information can be presented to the user with mul-

tiple linked views as compared to static visualizations. In fact, interactive linked

views represent the same amount of data as small multiples with only a single visible

visualization instance. Interaction takes the place of additional screen real estate.

Dynamic queries, a technique related to multiple linked views, allow the user to de-

fine query parameters interactively. The interactively defined query parameters are

used for generating the input data for a visualization [129].

The Model-View-Controller (MVC) architecture is a long standing best practice

for organizing complex applications [44]. The MVC architecture was first introduced

as part of the Smalltalk-80 system for building user interfaces [92] and has been

used extensively for Web application development [94]. Several authors describe how

the MVC architecture can be applied to visualizations with multiple linked views

[72, 69, 151, 23].

Functional reactive programming provides techniques for declaratively specifying

reactive data dependency graphs [149]. Elliott et al. applied functional reactive pro-

gramming to animation [52]. Hudak et alȧpplied functional reactive programming

to robotics [76]. Data flow is a concept related to functional reactive programming

in which developers can specify directed graphs of data transformations [65]. The

KNIME data analysis environment uses a data flow model as its primary abstraction

[12].
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2.2 Reactive Models

Functional reactive programming can be combined with the MVC paradigm to

create reactive models. These reactive models can serve as a foundation for reusable

interactive visualization components. This approach overcomes limitations of tradi-

tional MVC frameworks and is simpler than using a full blown functional reactive

programming framework. This section discusses a simple model with only set and

get methods (SimplestModel), then a more complex version that also includes on

(SimpleModel), then finally a complete reactive model implementation that includes

the when operator from functional reactive programming (Model).

The Model in MVC paradigm is responsible for:

• managing the state of the application,

• allowing the Controller to change the state of the application, and

• notifying the view when the state of the application changes.

One simple and widely used method for structuring a Model is as a set of key-value

pairs [94]. This kind of model can fulfill the all the responsibilities of a Model with

three methods:

• set(key, value) Set the value for a given key.

• get(key) Get the value for a given key.

• on(key, callback) Add a change listener for a given key. Here, callback is a

function that will be invoked synchronously when the value for the given key is

changed.

The following pseudocode implements a key-value model that has only set and get

methods. Line 1 defines the constructor function, SimplestModel, which will return

a new object that has set and get methods. Line 2 defines a private variable values
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that will contain the key-value mapping. Lines 3 - 5 define the set and get methods,

which store and retrieve values from the internal values object. The pseudocode

conventions are given in appendix A.

1 SimplestModel = λ()

2 values = { }

3 return

4 set : λ(key, value) values[key] = value

5 get : λ(key) return values[key]

Here’s an example of how SimplestModel might be used.

1 mySimplestModel = SimplestModel()

2 mySimplestModel.set(’x’, 5)

3 mySimplestModel.get(’x’) // Evaluates to 5

Here is a version of the model that implements the on method as well:
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1 SimpleModel = λ()

2 values = { }

3 callbacks = { }

4 return

5 on : λ(key, callback)

6 if callbacks[key] == nil

7 callbacks[key] = [ ]

8 callbacks[key].push(callback)

9 set : λ(key, value)

10 values[key] = value

11 if callbacks[key] 6= nil

12 for callback ∈ callbacks[key]

13 callback()

14 get : λ(key) return values[key]

The above version includes an additional private variable, callbacks, which is

an object whose keys are property names and whose values are arrays of callback

functions. The on method defined starting at line 5 adds the given callback to the

list of callbacks for the given key (and creates the list if it does not yet exist). The

set method has been modified to invoke the callback functions associated with the

given key when the value for that key is changed.

Here is an example of how the on method can be used.

1 mySimpleModel = SimpleModel()

2 mySimpleModel.on(’x’, λ()

3 log(mySimpleModel.get(’x’))

4 )

5 mySimpleModel.set(’x’, 5) // Causes line 3 to log 5

6 mySimpleModel.set(’x’, 6) // Causes line 3 to log 6
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For complex applications such as interactive visualizations, managing propagation

of changes can quickly become complex. For this reason, modular visualization en-

vironments based on data flow have become popular [2]. A data flow graph defines

a directed acyclic graph of data dependencies. The data flow model is amenable to

construction of graph-based visual programming languages [74]. While many systems

consider data flow as a means to construct data transformation pipelines, the concept

also applies to building reactive systems that manage change propagation throughout

an application or subsystem in response to user interactions or other events [52].

To provide a solid foundation for dynamic visualization systems, the Model should

be able function in the context of data dependency graphs. Developers should be

able to specify data dependencies declaratively, and change propagation should be

managed automatically. The when operator from functional reactive programming

propagates changes from one or more reactive functions (such as is found in the

JavaScript libraries Bacon.js [32] and RXJS [34]).

The SimpleModel implementation can be extended with a when operator that en-

ables construction of data dependency graphs. This operator will become a foundation

for building dynamic interactive visualizations. Since when is superior to on in that it

handles change propagation intelligently, in this final version on is not exposed in the

public Model API. Adding when depends on having some utility functions available,

debounce and allAreDefined.
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1 debounce = λ(callback)

2 queued = false

3 return λ()

4 if queued == false

5 queued = true

6 run(λ()

7 queued = false

8 callback()

9 )

The debounce(callback) function returns a function that, when invoked one or

more times in a single code path, will queue the given callback function to execute

only once on the next tick of the event loop. This has the effect of collapsing mul-

tiple sequential calls into a single call. The returned function is referred to as the

“debounced” function.

The debounce function defined starting on line 1 creates a closure with a boolean

variable queued (instantiated on line 2) that keeps track of whether or not the callback

function is currently queued to execute in the future. When the debounced function

(defined starting on line 3) is called the first time, the condition on line 4 evaluates to

true. This causes queued to be set to true (on line 5) and also causes the function

defined starting on line 6 to be queued to run in the future. This uses the built-in

function run that queues a function to execute on the next tick of the event loop.

When the debounced function is invoked multiple times in the same code path,

the condition on line 4 evaluates to false, and nothing happens. When the current

code path terminates and the queued function is invoked, queued is set to false (on

line 7) and the callback function is invoked.

The function allAreDefined(array) checks if all values in the given array are

defined. It does so by comparing each item in the array to the special value nil. As
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soon as one item is found to be nil, the function returns false (on line 4). If all

items have been checked and none are found to be nil, the function returns true

(on line 5).

1 allAreDefined = λ(array)

2 for item ∈ array

3 if item == nil

4 return false

5 return true

We are now ready to define our model that includes the when operator.

1 Model = λ()

2 simpleModel = SimpleModel()

3 return

4 set : simpleModel.set

5 get : simpleModel.get

6 when : λ(dependencies, fn)

7 callFn = debounce(λ()

8 args = dependencies.map(simpleModel.get)

9 if allAreDefined(args)

10 apply(fn, args)

11 )

12 callFn()

13 for key ∈ dependencies

14 simpleModel.on(key, callFn)

The above Model pseudocode implements a reactive model. Line 2 instantiates a

SimpleModel instance that serves as the core of the reactive model. The set and get

methods of the inner SimpleModel are exposed in the reactive model instance. Note,
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however, that the on method is not exposed. The when method defined starting on

line 6 implements reactive data flow propagation. This method takes as input two

arguments, a dependencies array of model property names, and a callback called fn.

Line 7 defines callFn, a debounced function that invokes the fn callback.

The callback function fn gets invoked when all dependency properties are avail-

able and whenever any dependency properties change. The values for each depen-

dency property are extracted from the model on line 8 and passed as arguments to

the callback function on line 10. Line 9 ensures that callbacks are only invoked if all

dependency properties have assigned values. Line 12 invokes the callback once for

initialization. The callFn function is added as a listener to all dependency properties

using the on method on lines 13 and 14. Note that when the fn callback sets model

properties, this represents edges in the data flow graph from each of the dependency

properties to the newly set values. This implementation uses the JavaScript event

loop (by debouncing) as a queue to perform breadth-first update propagation through

reactive data flow graphs.

The following pseudocode demonstrates basic usage of reactive models in comput-

ing a full name from first and last names. In this example, line 1 instantiates a new

reactive model and assigns it to the variable person. Line 2 invokes the when method

with dependency properties firstName and lastName. When both properties are

defined and whenever either one changes, the callback function implemented on line

3 gets invoked. This callback function sets the fullName property on the person

model to be the full name, that is, the first and last names combined with a space

between them. This reactive flow is depicted in figure 2.1.
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Figure 2.1. A basic reactive model that computes the full name whenever either
the first name or last name changes. The reactive function is defined using the when
operator, therefore represents a node in a reactive data flow graph.

1 person = Model()

2 person.when(["firstName", "lastName"], λ(firstName, lastName)

3 person.fullName = firstName+" "+lastName

4 person.when(["fullName"], λ(fullName)

5 log(fullName)

6 person.set("firstName", "John")

7 person.set("lastName", "Smith")

Lines 4 and 5 set a when callback to log the full name whenever it changes. Lines

6 and 7 set the firstName and lastName properties on the person model. This

causes fullName to be computed and set on the model. When fullName is set,

the callback that logs fullName is invoked, causing the string "John Smith" to be

logged.

2.3 Reactive Bar Chart

Reactive models can serve as a foundation for interactive visualizations. Reac-

tive models for multiple visualizations can be linked together at a higher level to

form linked views. Interactive visualizations must respond to changes made by users

such as resizing the display, changes in the data driving the visualization, changes
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in visualization configuration, and updates from other visualizations in a linked view

context. This section introduces reactive visualization concepts through the example

of a Bar Chart, then presents reusable reactive visualization components extracted

from the Bar Chart.

A bar chart takes as input an array of data entries and a configuration that

specifies the mapping from data attributes to the X and Y axes. It yields a dynamic

bar chart graphic as output. The behavior desired for building the bar chart in

response to changes in data and configuration fit perfectly within the framework of

reactive models. As a first pass at constructing a reactive bar chart, the following

reactive model properties are introduced:

• data The input data table

• xAttribute The attribute used for the X scale (bar name)

• yAttribute The attribute used for the Y scale (bar height)

Using these three properties alone supports the essence of a bar chart, the plotting

of bars and the labeling of axis tick marks. However, as attribute names are often

cryptic and may not be the best labels for visualizations, two more model properties

can be introduced that specify the text content of X and Y axis labels:

• xAxisLabel The string displayed as the X axis label

• yAxisLabel The string displayed as the Y axis label

Bar charts and many other visualizations have an inner visualization rectangle in

which visual marks are plotted. This inner rectangle lies within the outer rectangle

containing the entire visualization, offset from the outer box by a specified margin.

To integrate margin logic with reactive models, the following model properties are

introduced:
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• size The size of the outer rectangle that contains the entire visualization, de-

fined as an object with width and height properties in pixels.

• margin The margin object, having properties left, right, top and bottom in

pixels, according to the D3 margin conventions [20].

• width The width of the inner visualization rectangle in pixels.

• height The height of the inner visualization rectangle in pixels.

The model properties defined this far support encapsulation of conventional D3

margins. A reactive function can be defined that updates width and height based

on size and margin. With the attributes present, scales can also be computed by

reactive functions. The X scale depends on data, xAttribute, and width. The Y

scale depends on data, xAttribute, and height. With the X and Y scales defined, the

last remaining step is to compute the bars and axes from the data and scales. The

complete reactive flow graph for a bar chart is shown in figure 2.2.

2.4 Reusable Reactive Flows

Consider the following visualization techniques:

• Bar Chart

• Scatter Plot

• Line Chart

• Stacked Area Chart

These visualizations share many underlying primitives such as scales, axes, and

margins. The D3 Open Source project provides high quality generalized solutions

for these and many more visualization primitives [19]. These visualization primitives
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Figure 2.2. The data flow graph for a reactive bar chart based on reactive models.

and their computational dependency structure can be encapsulated by reactive flow

graphs. Interactive forms of these visualizations also share interaction techniques for

selecting visual marks such as rectangular brushing, hovering, clicking, panning, and

zooming. Table 2.1 lists reusable reactive flows common to many visualizations.

Other visualization techniques that may also be implemented using reactive mod-

els as a foundation include:

• Parallel Coordinates

• Choropleth Map

• Table

• Box Plot

Property names serve as the common elements between components. Property

names used in one or more components not introduced in the Bar Chart include:
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Table 2.1. Reusable flows for reactive visualization.

Component Diagram Description

margin

Computes the size of the inner visual-
ization rectangle based on the container
size (which may change when the user
resizes the visualization) and the config-
ured margin.

xScale

Computes the X scale. The domain is
computed from the input data by eval-
uating the X attribute bounds. The
range is computed from the inner visu-
alization width.

xAxis
Renders the X Axis (line, tick marks
and labels) from the X scale .

xAxisLabel Renders the text label for the X Axis .

yScale

Computes the Y scale. The domain is
computed from the input data by eval-
uating the Y attribute bounds. The
range is computed from the inner visu-
alization width.

yAxis
Renders the Y Axis (line, tick marks
and labels) from the Y scale .

yAxisLabel Renders the text label for the Y Axis .

colorScale

Computes the color scale. The do-
main is computed from the input data
by evaluating the set of unique values
found in the color attribute.
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• xScale The scale (domain and range) for the X axis.

• xScaleType xScale qualifier: linear, logarithmic, or ordinal.

• xAxis The visible X axis (tick marks and labels).

• yScale The scale (domain and range) for the Y axis

• yScaleType yScale qualifier: linear, logarithmic, or ordinal.

• yAxis The visible Y axis (tick marks and labels).

• colorAttribute The scale used to determine color of visual marks.

• colorScale The scale used to determine color of marks.

Table 2.1 lists components that can be combined to easily generate a foundation

for a variety of interactive visualizations. These components encapsulate reusable

reactive flows that implement the primitives necessary for interactive visualizations.

Figure 2.2 showed how several of these components can be assembled to create a

general-purpose reactive bar chart. This bar chart flow represents a template for

other visualizations, such as scatter plots. In fact, the only things that need to be

changed in the bar chart flow to make it a scatter plot are (1) the X axis must be

made quantitative, and (2) dots should be plotted rather than bars. Similarly, only

the visual marks must be modified to change a scatter plot to a line chart, shown in

figure 2.3.

Interactive user interface components can be linked with any reactive model prop-

erty. This makes it straightforward to add interactivity to reactive visualizations

using conventional user interface elements such as dropdown menus, check boxes,

sliders, and color pickers. For example, the X and Y attributes used by the scatter

plot in figure 2.4 can be made configurable using dropdown menus.
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Figure 2.3. A line chart that shares scale and axis flows with scatter plots and bar
charts.

Figure 2.4. A scatter plot where X and Y attributes are selectable via Bootstrap
List Group user interface elements.
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2.5 Linked Views

Composing reactive visualizations from reusable flows yields reusable and com-

posable interactive visualizations. Interactions such as brushing can be linked to the

reactive model of the visualization instance. In the case of brushing, a model property

brushedIntervals contains the currently brushed intervals. This object stores the

(min,max) values for each attribute brushed. The updating brushed intervals can be

used to as input to a filter operation that excludes data entries outside the brushed

intervals. The output from the filter operator can be routed as input to another

visualization. Figure 2.5 shows an example of linked views using this approach.

Figure 2.6 shows the overall flow of the linked scatter plot and bar chart. The

brushing interaction sets a property on the reactive scatter plot called selectedData.

A reactive function that aggregates the selected data by Iris species links the selected

data to the input data of the bar chart. Whenever the user brushes to select a new

set of records in the scatter plot, the bar chart updates immediately to show only the

selected data.

One advantage of reusable reactive flows is that when improvements are be made to

a generalized feature, many visualizations manifest the improvement. For example,

consider the X and Y axes used for many visualizations such as scatter plot and

bar chart. The original D3 example that was drawn from to implement the axes

had placed the axis labels inside the inner visualization rectangle. This had the

unfortunate consequence that sometimes the label was occluded by marks within the

visualization. To solve this issue, the axes were modified such that labels are placed

outside the visualization area, are larger than tick mark labels, and are centered with

respect to the axes. Figure 2.7 shows the effect of the axis label improvement, which

appears both in the scatter plot and bar chart.
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Figure 2.5. A visualization of the Iris data set [6] using linked views, powered
by reactive visualization components. Brushing to select records in the scatter plot
causes the selected data to be aggregated and displayed in the bar chart.

Figure 2.6. The (simplified) data flow graph for the linked scatter plot and bar
chart example shown in figure 2.5.
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Figure 2.7. An improved version of the linked bar chart and scatter plot exam-
ple. When changes are made in reusable components such as axes, the improvement
is inherited by many reusable visualizations. This version also integrates with the
reusable Bootstrap table component, showing the brushed selection in the table.
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2.6 Summary

This chapter introduced a novel way to combine elements of functional reactive

programming with the Model View Controller (MVC) paradigm to create reactive

models. Reactive models allow developers to specify data dependency graphs declar-

atively. This kind of abstraction is well suited for developing interactive visualizations

because it drastically simplifies management of complex data flows and update pat-

terns.

A collection of reusable reactive flows for interactive visualization was also in-

troduced. These reactive flows encapsulate visualization primitives such as margins,

scales, and axes. These flows were used as building blocks to generate a reusable

bar chart, scatter plot and timeline. Visualizations with multiple linked views can be

developed from these reusable visualization components in a straightforward manner

.

2.7 Future Work

Future directions for this work will focus on developing a full catalog of reusable

visualization components, coupling the data to currently available public data sources,

visualization-centric user interfaces, and collaboration.

So far, the reactive visualization approach has been applied only to several vi-

sualization techniques. However, the following visualization techniques can also be

supported:

• Color Legend

• Pie Chart

• Choropleth Map

• Parallel Coordinates
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• Heatmap

• Stacked Bar Chart

• Stacked Area Chart

• Streamgraph

• TreeMap

• Force Directed Graph Layout

Additionally, reusable components for the following interaction techniques can

be encapsulated independently of any specific visualization technique using reactive

models:

• Brushing - Dragging to define a selection region interactively.

• Picking - Selecting a single visual mark by clicking or tapping on it.

• Details-on-demand - A pattern of linked view composition in which an overview

visualization can be used as navigation for a detailed view. This is a fundamen-

tal concept in interactive information visualization [130].

A user interface for quickly assembling reusable components together based on

graph drawing can also be developed. This user interface would show the data de-

pendency diagrams similar to figure 2.2, but they would be dynamic and editable.

Another direction for future research is integrating external user interface components

such as traditional list selections, drop down menus, and radio buttons. One example

of this concept is shown in figure 2.8, which shows how reactive models can provide

reactive HTML tables that can be linked with interactive visualizations. This would

help in constructing intuitive user interfaces for manipulating the configuration of

visualizations.
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Figure 2.8. A visualization of the Cars data set [70] by a reactive component that
renders an HTML table style using Twitter Bootstrap [96].
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CHAPTER 3

COLLABORATIVE VISUAL DATA EXPLORATION

The utility of interactive visualizations depends on the ability of users to create

them. Typically, data scientists or analysts work in teams. Contributions are made

from every person on the team, and then the team must present their findings in

a non-exploratory context. Sometimes it is useful to be able to show the path of

exploration that the team has taken, using some kind of history model. This chapter

presents an approach to enabling all of the above features, leveraging reactive models.

3.1 Related Work

Several projects have focused explicitly on visualization of public data on the Web.

ManyEyes was an experiment in scaling the audience for visualizations by empowering

users to create visualizations of their own data [147]. ManyEyes provided a fixed set

of pre-packaged visualization tools and allowed users to visualize their own data tables

using the provided visualizations. GapMinder is a project aimed at exposing public

data (primarily the United Nations Millenium Development Goals Indicators) using

visualization [123]. GapMinder includes an animated scatter plot with an interactive

time slider, a line chart showing statistics over time, and a world map (see figure

3.1). The Google Public Data Explorer provides a visual interface to selected public

data sets similar to GapMinder, but it does not make the data available to users in

machine-readable form [77].
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Figure 3.1. GapMinder, a public data visualization tool based on an animated scat-
ter plot, timeline, and map. Here, Professor Hans Rosling, the creator of GapMinder,
is shown gesturing the motion of the plot while presenting the visualization.

Many data visualization and analysis tools have been developed with collabora-

tion in mind. Tableau Server has collaboration features such as sharing visualizations,

commenting on visualizations, embedding visualizations in Web pages, and sharing fil-

tered data. The OpenChorus project supports annotation and sharing of data sources

using a variety of database technologies including SQL, Hadoop (HDFS), Oracle, and

Greenplum [93]. Foundational collaboration technologies include Operational Trans-

form for synchronous collaboration such as Google Docs [137] and revision control

systems for asynchronous collaboration such as GitHub [117, 41].
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3.2 Application State Model

An application typically consists of instantiations of many reusable components.

For example, an AngularJS application instantiates reusable components encapsu-

lated as Angular directives, and a BackboneJS application instantiates Views for

specific Models.

Interactive visualizations with multiple linked views share common patterns, in-

cluding layout based on nested boxes and view linkage based on flows between in-

teraction output, data transformations, and visualization input. This configuration

can be expressed as a set of reactive models. Some models, such as the layout and

linkages, must be able to access other models in the system and change their proper-

ties (e.g., the bounding box for layout and the selected elements for linked views). A

simple structure based on named models can accommodate the above needs.

Our application state structure consists of components, each of which has:

• alias The string identifier for the component.

• module The string that defines which module to instantiate.

• model A collection of serialized model properties.

This structure can be serialized using JSON [37]. The overall application state

configuration is an object whose keys are component aliases, and whose values are

component objects. Each component object contains key-value pairs representing its

serialized model state. Each component also has a value for the module property that

determines which module is invoked to instantiate the component at runtime. Figure

3.2 shows an example of a configuration that instantiates simple components into a

nested box layout. This layout technique is one of the foundations for assembling

linked views. Any reusable visualization can be placed into a box in the layout, then

linked with other visualizations within the same layout. Figure 3.3 shows an example

nested box layout that includes visualizations.
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Figure 3.2. An example configuration that defines a nested box layout.

Figure 3.3. An example configuration that defines a nested box layout including
line chart and map visualizations.
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3.3 Runtime Engine

The application state model addresses the configuration and serialization struc-

ture of the application state. A runtime model is necessary to transform serialized

application state models into a running system. The runtime engine performs this

transformation as follows:

• The runtime engine module loader is instantiated. This process defines a map-

ping from module names to constructor functions that instantiate the compo-

nents, returning reactive models.

• The module property of each component in the application state configuration

is used to instantiate each component.

• The runtime engine maintains a dictionary whose keys are component aliases

and whose values are instantiated components.

• Instantiated components can request references to other instantiated compo-

nents from the runtime. This operation must be asynchronous to account for

dynamic module loading.

As an example, consider the flow of instantiation for the application state shown

in figure 3.2. The runtime uses the module property on each component to fetch and

invoke its constructor module. The boxes module computes the nested box layout.

The computed nested box layout is used for dynamically positioning and sizing the

interactive visual components.

The first prototype of the interactively configurable runtime engine was developed

during a summer internship at Rapid7, a cybersecurity company, to create an interac-

tive visualization dashboard with multiple linked views for analyzing corporate login

activity. Technologies used for visualization included D3.js, a visualization framework

that uses SVG, and Leaflet.js, a framework for geographic maps. The map showed

41



Figure 3.4. This visualization dashboard shows corporate login data and is inte-
grated into the Rapid7 product called UserInsight.

where users have logged into the network, aggregated geographically using the Leaflet

MarkerCluster plugin and visualized using D3’s Pie Chart layout. Black represented

successful logins and blue represented failed logins. This industry application of our

dashboard layout framework demonstrates its capability to define dashboards with

multiple linked views. The resulting visualization dashboard is shown in figure 3.5.

3.4 Changing State

When the application state configuration changes, the runtime components must

be updated accordingly. Consider the scenario of a user manually editing the ap-

plication state configuration using a text editor. Every time the user changes the

configuration, the system must update the runtime to reflect the new configuration.

A näıve approach to this problem is to tear down and re-instantiate the entire run-

time whenever the configuration changes. This approach, while functionally correct,

42



Figure 3.5. The dashboard scaffold prototype, showing an interactive text-based
configuration editor on the left, and a sample dashboard on the right. This shows
how Leaflet-based maps can be integrated with D3 visualizations using the proposed
configuration framework.
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does an extraordinary amount of unnecessary work. A more efficient solution would

employ a strategy in which only the changes in configuration are propagated through

the runtime, while unchanged configuration parameters need not have any effect on

the runtime.

All application state configuration updates can be expressed as a series of the

following operations:

• create(alias, module)

• destroy(alias)

• set(alias, property, value)

• unset(alias, property)

In the context of a user manually updating the configuration at runtime, the

difference between two configurations can be computed. The difference results in a

structure that can be applied to the runtime essentially as a patch.

3.5 Real-time Synchronization

While Operational Transform algorithms address the general case of many-way

synchronization for arbitrary text [35], if we have a simpler application state config-

uration structure, it is possible to implement simpler many-way synchronization al-

gorithms. Our simple application state configuration difference structure provides an

important primitive for real time configuration. The configuration difference objects

computed locally can be broadcast to other clients and applied to remote runtimes

to achieve real time many-way synchronization.

To implement real time synchronization, consider the application state and its

changes as a directed graph G = (V,E). Vertices in the graph represent application

states, and each directed edge between nodes u and v represents a change in state. In
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a distributed environment with multiple clients, any client can originate a new state.

The client that creates a new state provides the associated configuration difference

object that can move any client runtime from state u to state v when applied.

Situations may arise in which the source state u of a new state transition does not

match the current runtime state. This occurs when two or more clients simultaneously

originate conflicting state changes. The distributed synchronization algorithm must

guarantee that no matter which order the conflicting state transitions arrive at the

server, all clients must ultimately end up in the same state. This requirement can be

implemented with simple algorithms that throw away some changes, or more complex

algorithms that preserve every change.

Simple distributed synchronization algorithms can be developed that implement

either “first one wins” or “last one wins” semantics. First one wins semantics means

that the first of several conflicting state transitions that arrives at the server is ac-

cepted as the authoritative one and forced upon clients, causing the clients to roll

back local conflicting changes. Last one wins semantics means that the last of several

conflicting state transitions that arrives at the server is accepted as the authoritative

one, causing the server to compute rollbacks and broadcast them to clients. Either

way, clients experience loss of changes. In use cases with many concurrent users

making changes simultaneously, these semantics would lead to frustrating user expe-

riences, as users must perform their actions twice or more before they are accepted

into the authoritative state.

More complex algorithms that involve merging conflicting state transitions can

address multiple concurrent changes. These algorithms must merge multiple config-

uration difference objects and generate a new state originating at the server. The

server, with awareness of the states of each client, must send different transitions to

each client such that each client ultimately is in the new state that originated from

the server.
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3.6 History Model

Using the state machine model discussed, transitions can be annotated with an

undo operation to enable history graph navigation. Each transition that occurs in the

system adds a forward edge (a “do” operation) and a backward edge (an “undo” op-

eration) to the history graph. Numerous algorithms exist for computing the shortest

path in an arbitrary directed graph [57]. A shortest path algorithm such as Dijkstra’s

can be used to compute the sequence of configuration difference objects to apply to

a runtime in order to transition the system from any state to any other state.

3.7 Integration with Web Technologies

To build interactive visualizations for the Web using reactive models, there must

be a clearly defined way to interface between reactive models and Web graphics

technologies. The primary Web graphics technologies are Canvas and SVG (Scalable

Vector Graphics). The Canvas element provides an additional API called WebGL

that supports hardware accelerated graphics. The goal of integrating reactive models

with Web graphics technologies is to build reusable interactive graphics modules.

The modules can be instantiated and linked with specific data to create interactive

visualizations.

Instantiations of reusable interactive graphics components in general function in

conjunction with a DOM element. Therefore, one way to accommodate any Web

technology is to design an API in which a module constructor function creates a

DOM element that contains its visual representation. Cascading Style Sheets (CSS)

can then be used to position the DOM element. This approach effectively unifies

Canvas, WebGL, and SVG, and allows interactive graphics modules authored using

different APIs to function together on a single page.
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CHAPTER 4

THE UNIVERSAL DATA CUBE

Consider the question “Is there a correlation between the population of a country

and its Gross Domestic Product (GDP)?”. The data for population and GDP can

only be obtained independently from different sources. Suppose each data set is a

relation. To apply visualization or analysis techniques to the data, the two relations

must first be joined such that each row in the resulting relation represents a country

and contains values for both population and GDP.

Integrating data from a variety of independent sources makes the data more useful,

informative, and valuable for visualization and analysis tasks. Existing data integra-

tion and multidimensional analysis approaches typically target relational data sources.

The data cube concept from the area of Online Analytical Processing (OLAP) is

suitable for modeling statistical data sets. These approaches do not readily support

integration of pre-computed data cubes, which is applicable for primarily scientific

and social data analysis and visualization.

There is immense potential value in data that is not being realized. While publicly

available data sets for just about any topic are published on the Web, it is difficult

to realize their full value in practice because they exist in many different formats

and vocabularies. The heterogeneity of these formats and vocabularies also makes

it difficult to combine and analyze these data sets, and hinders the development of

general purpose visualization tools.

This chapter presents novel data structures and algorithms for data set repre-

sentation, integration and querying based on the data cube concept. The proposed
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Figure 4.1. The overall context of the UDC as a technology for data integration for
the purpose of interactive visualization.

framework is called the Universal Data Cube (UDC). Using this approach, many data

sources can be integrated together into a single data structure. General purpose data

visualization and analysis tools can then operate by querying the integrated data

structure. Figure 4.1 shows the overall flow enabled by the UDC, from disparate data

sets to general purpose interactive visualizations.

4.1 Related Work

Existing approaches to representing, visualizing, and analyzing are vast. The

relational model is the foundation of relational databases. Data cubes are multidi-

mensional aggregated relations suitable for visualization and analysis. The field of

knowledge management is concerned with general data models representing vast col-

lections of concepts and facts. Data integration is an area focusing on techniques for

combining data from many sources.

Relational database systems provide a mature data management solution and are

widely adopted [120]. Relational algebra is the theoretical underpinning of relational

databases [30]. Perhaps the most familiar data representation system today is the

spreadsheet, which is capable of representing relations as well as complex operations

across data values [50]. Many organizations use spreadsheets, employing Microsoft
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Excel, Google Docs, or other tools to manage data or make data available. For

example, the United Nations Department of Economic and Social Affairs provides

their population statistics in Excel format (see figure 4.8).

The term “data cube” was originally introduced as a relational operator gener-

alizing group-by, cross-tab, and sub-totals [61]. The data cube operator produces

relations containing aggregated values from other relations. Data warehouse systems

are typically built on the relational model and are augmented by data cubes, also

known as OLAP (OnLine Analytical Processing) cubes, for reporting and analysis

[31]. The term OLAP stands in contrast to OLTP (OnLine Transaction Processing),

which is the part of the data warehouse system that ingests and stores data at the

level of individual transactions or events. After the ETL (Extract, Transform and

Load) phase of the data warehouse flow, the data is analyzed by computing a data

cube from the transactional data.

Data cubes contain summaries of the collection of facts stored in a relational

database [27]. For example, a data cube may contain how much profit was made

from month to month subdivided by product category, while the relational database

may contain the information associated with each individual transaction. Because

data cubes provide a higher level of abstraction, they are a widely used method of

data abstraction for supporting visualization and analysis tasks. Kimball pioneered

the area of “Dimensional Modeling,” which concerns constructing data warehouse

schemas amenable to OLAP-based analysis [89]. Data cubes have been implemented

in a variety of different systems, so effort has been made to discover unified conceptual

or mathematical models that can characterize many implementations [43, 146, 145,

97, 4, 63, 18].

The data cube concept and structure can be used to model existing data as well.

Publicly available data sets (often termed “statistical data”) may be considered as pre-

computed data cubes if they contain aggregated measures (also called “indicators,”
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“metrics,” or “statistics”) across time, geographic space, and other dimensions such

as gender, age range, ethnicity, religion, or industry sector.

Existing OLAP technologies assume that the data cubes will be computed from

a relational source. They are not designed to handle integration of pre-computed

data cubes that may use inconsistent identifiers for common dimensions and mea-

sures between multiple data sets. Therefore, the application of the data cube concept

to integration and visualization of many pre-computed data cubes, while theoreti-

cally plausible, requires the development of novel data structures and algorithms that

extend the data cube model to handle integration of pre-computed data cubes that

may use inconsistent identifiers for common dimensions and measures. With this

approach, it is possible to model many data sets using their shared dimensions and

measures. This enables integration of many data sets into a single structure suitable

for visualization and analysis.

The Semantic Web is a vision of a “Web of Data” coexisting with the World Wide

Web [11]. The basis of the Semantic Web is the Resource Description Framework

(RDF) data model, which represents a graph of data in the form of (subject, predicate, object)

triples. The Semantic Web vision has evolved into the concept of Linked Data, which

refers to data that is available as RDF and made available according to common con-

ventions [16, 14]. Any data that can be represented using a relational database can

also be represented using RDF [15]. The SPARQL query language for RDF can be

used to query and integrate data from multiple sources [118]. Lopez et al. developed

an information management system for integrating and analyzing heterogeneous in-

formation sources characterizing urban areas [102]. The Semantic Web technology

stack contains a method for declaring when different identifiers refer to the same

entity and processing queries appropriately to integrate data [67, 45]. While the Se-

mantic Web provides a compelling vision, its adoption is not as widespread as one

might expect [103].
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The RDF Data Cube Vocabulary is capable of representing data cubes using Se-

mantic Web technologies [40]. The intention of the RDF Data Cube Vocabulary

is to provide a common representation and interchange format for statistical data.

The RDF Data Cube Vocabulary draws from a previous effort called the Statistical

Data and Metadata eXchange (SDMX) initiative that was launched in 2001 by seven

organizations working on statistics at the international level [39]. The primary chal-

lenges faced when using the RDF Data Cube Vocabulary include transforming to and

from well known formats and data models. Salas et al. discussed how data can be

transformed from existing OLAP systems or flat files into RDF using the Data Cube

Vocabulary and introduced a faceted visualization tool for RDF data cubes [125].

Kämpgen et al. investigated how data represented using the RDF Data Cube Vocab-

ulary can be transformed for analysis using traditional OLAP systems [84]. Maali et

al. proposed a pipeline for converting government data into high quality Linked Data

utilizing the Data Cube Vocabulary [104].

The field of data integration offers many techniques for combining data from multi-

ple sources based on the relational model [48] as well as from a theoretical perspective

[95, 66, 159]. Schema matching is the area of data integration that concerns semantic

matching between the attributes of data tables from different sources [119, 53].

Schema matching may be performed manually, but it must be automated to scale

to hundreds or thousands of different sources. Numerous approaches for automated

schema matching have been proposed [131, 46, 86, 110, 106, 47]. Schema matching

approaches aimed specifically at Web- and Ontology-based data integration have also

been proposed [71, 113, 49, 107, 83, 114, 144, 148, 115, 82].

Data matching (also known as record linkage) is the area of data integration

focusing on resolving different identifiers to the same real-world entity [156, 157, 91,

5, 62]. Record linkage has been applied extensively to public data [81, 80, 75]. Several

tools have been introduced that aid users in data integration tasks via a graphical
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user interface [29, 85, 51, 60]. Techniques from both of these areas must be applied

to integrate data sets from multiple sources and use the proposed unified data model.

4.2 Case Study: Causes of Death

The Centers for Disease Control provides data on causes of death in the US over

time. This data set was targeted for visualization as a case study in visualizing public

data sets containing pre-aggregated data cubes. A natural way to visualize this data

is as a stacked area chart, shown in figure 4.2. The table contained a hierarchy of

diseases, and all but the top-level disease categories were removed manually. Selecting

the subtree of causes of death to include in the visualization is one example of a task

that would be automated with our data representation framework. Next, a JavaScript

program was written that pivoted the table from a format where each column was a

year to a format where each row is a year, making the table usable by D3.js. This

table contained an entry for “all causes,” which was removed manually because it was

not appropriate to include visualize.

The mortality data set was published in GitHub Pages using JavaScript Object

Notation (JSON) [37] compatible with the structure accepted by D3 [19]. AMD

(Asynchronous Module Definition) is a JavaScript pattern for publishing and con-

suming reusable modules across domains [116]. The mortality data set was published

as an AMD module containing JSON data rather than as a CSV or JSON file in order

to circumvent the same-origin policy. This allows any Web page to consume the data

set, not only pages within the same domain. This method of publishing was chosen

because it is a simple way to publish data publicly with zero cost (as GitHub Pages

is a free service for Open Source code), longevity, as GitHub is less likely to go offline

in the future than a private server, and cross-domain availability (any page can load

the module using an AMD loader such as require.js). This method of publishing

data is also developer-friendly, as most modern developers are familiar with GitHub.
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The mortality stacked area visualization highlights several issues that must be

addressed when using our proposed data representation framework. The causes of

death extracted from the raw data are sometimes too long to use in the visualization

as labels due to limited screen real estate. For example, “Symptoms, signs, and

abnormal clinical and laboratory findings, not elsewhere classified” is too long to be

placed next to its corresponding color in the legend of the visualization, and could

be simplified to “Unclassified conditions.” In a data cube model, causes of death

would be members in a dimension hierarchy. The labeling issue encountered in the

mortality visualization indicates a need to support renaming of members for use as

textual elements within visualizations. Since each label refers to a dimension member

which may also be a generally well-known concept, the labels on the visualization

could, for example, be links to the Wikipedia pages about the various causes of death,

such as Cardiovascular Disease. In addition, there are 24 causes of death presented in

this visualization using different colors, while the color scales provided by D3 and the

color scale library ColorBrewer only support up to 20 colors. This issue indicates that

it may be useful to be able to aggregate dimension members automatically as a new

“Other” category in certain cases, or allow users to manually select only a subtree of

a dimension hierarchy for visualization.

Figure 4.3 shows a sample of the raw data from which the hierarchy of causes

of death must be gleaned. In this data, the hierarchy is encoded as an indented

tree. Two different characters are used as indentation characters, ASCII codes 32

(space) and 65533 (unknown character). The level of indentation does not use a

consistent number of indentation characters per indentation level. For example, the

indentation level jumps from 0 to 4 to 7 to 10 to 13. We implemented an algorithm

that parses the tree structure from an indented list and outputs the tree in the JSON

structure compatible with D3.js hierarchical layouts. The JSON that the D3 Tree

Layout algorithm expects is a tree data structure in which each node has a name and
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Figure 4.2. A second pass at a stacked area visualization of Mortality data from
the US Centers for Disease Control. This version has 25 hand-picked distinguishable
colors, a color legend to spread out labels, and shortened labels in some cases.

an array of child nodes. Leaf nodes may have additional quantitative properties to

be visualized [22].

Several D3 examples were drawn from to implement the cause of death tree vi-

sualization shown in figure 4.4, which uses the ReingoldTilford “tidy” tree layout

algorithm [121]. This visualization shows only the hierarchy of causes of death. No

numerical values are associated with each node. Notice that the two causes of death

that show the highest percentages in our stacked area visualization, Cancer and Car-

diovascular Diseases, are the two nodes in the hierarchy that have the two largest

subtrees of categorization.

The node-link tree visualization in figure 4.4 demonstrates a visualization tech-

nique that can be applied to visualize dimension hierarchies in general. This imple-

mentation shows the structure of the hierarchy clearly, but has several drawbacks.

Due to the size of the hierarchy, the inclusion of labels for all nodes necessitates small

labels that are only legible at high resolution. When a hierarchy scales above certain
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Figure 4.3. A portion of the raw data from the Centers for Disease Control encoding
the hierarchy of causes of death. The number of indentation characters is shown on
the left, and the content of the “Cause” field from the original CSV file is shown on
the right in quotes. Note that there are two different indentation characters used,
and the indentation level is not of a consistent multiple. This is one example of an
unconventional format that must be parsed into a dimension hierarchy for use within
our data representation framework.

thresholds of width and depth, this visualization becomes unwieldy, and labels must

be truncated or omitted entirely. This is one example of the scalability issues that

must be addressed when developing general-purpose visualization techniques.

The pair of visualizations shown in figure 4.5 is an example of a visualization

dashboard with multiple linked views. The tree view shows a single level subtree.

Black nodes have children, while white nodes do not. Clicking a black node causes

the tree to drill down into the subtree with the clicked node as its root. When this

interaction is executed, the stacked area visualization is recomputed to show the new

set of disease causes that corresponds to the children of the newly selected node. In

this way, the tree visualization provides interactions for drill down and roll up that

define the slice of data shown in the stacked area chart.
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Figure 4.4. A tree visualization of data from the Centers for Disease Control showing
the hierarchy of causes of death. This is one example of a visualization that shows
the structure of a dimension hierarchy.
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Figure 4.5. Cause of death visualization with two linked views. Navigating up and
down the hierarchy by clicking nodes changes the slice of data shown in the stacked
area visualization. The top view shows the top-level causes of death. Clicking the
“Cancer” node yields the view on the bottom left, which shows types of cancer in
the stacked area visualization. Further drilling down to “Lymphoma, leukemia and
myeloma” yields the view on the bottom right.
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4.3 Data Set Representation

In the sections that follow, capitalization denotes terms that have a concrete and

well defined meaning within the UDC data structure. These terms include Data Set,

Dimension, Member, Measure, Dimension Column, Measure Column, Cube Data Set,

Concordance Data Set, Codelist, and Code. Each of these terms will be introduced

one by one in terms of what role they play in the UDC data structure. Italicized

terms are functions that perform the algorithms associated with data integration and

querying. These algorithms operate in terms of the UDC data structure.

A Data Set is a relation with associated metadata that provides context for its

interpretation. Tables 4.2, 4.1 and 4.3 are concrete examples of Data Sets, showing

both their relations and metadata. The relation contains the core table of the Data

Set. The metadata specifies the interpretation of the relation in terms of Dimensions

and Measures. Columns in relations can be annotated in the metadata as either

Dimension Columns or Measure Columns. A Dimension Column contains Codes from

a single Codelist that refer to Members of a given Dimension. A Measure Column

contains numbers representing values for a given Measure. A scaling factor can be

associated with each Measure Column to account for varying scales for the same

Measure across different Data Sets.

To integrate Data Sets together, we need two kinds of Data Sets, Cube Data Sets

and Concordance Data Sets.

A Cube Data Set contains a relation that represents a data cube using a star

schema. Certain columns represent categorical Dimensions, while others represent

quantitative Measures. Dimensions are sets of distinct entities that may be unordered,

ordered, or hierarchical. Each distinct entity of a Dimension is called a Member. A

row in the relation of a Cube Data Set represents a unique set of Members, one from

each Dimension of the Cube Data Set, in its Dimension Columns. The unique set

of Members represented in each row is called a Cell, which acts like an address in
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Table 4.1. A Cube Data Set about Population.

table

countryCode year pop
356 1960 449595.489
356 2010 1205624.648
156 1960 650680.114
156 2010 1359821.465
840 1960 186361.893
840 2010 312247.116

dimensions
column dimension codelist

countryCode Space UN M.49
year Time Year

measures
column measure scale

pop Population 1,000

Table 4.2. A Cube Data Set about GDP.

table

countryCode year gdp
IND 1960 37679274491.2745
IND 2010 1708450861364.17
CHN 1960 61377930682.0013
CHN 2010 5930529470799.17
USA 1960 520531181568
USA 2010 14958300000000

dimensions
column dimension codelist

countryCode Space ISO3
year Time Year

measures
column measure scale

gdp Gross Domestic Product 1

Table 4.3. A Concordance Data Set linking equivalent terms used by different cubes
referring to countries.

table

countryName unCountryCode alphaCode
India 356 IND
China 156 CHN

United States 840 USA

dimensions

column dimension codelist
countryName Space UN Geoname

unCountryCode Space UN M.49
alphaCode Space ISO3
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the data cube. Measures are aggregated quantitative properties that can be assigned

to Cells in the Measure Columns of the relation. A Cube Data Set contains a set

of Observations that draw from a common set of Dimensions and Measures. An

Observation links a Cell with concrete values for each Measure. Each complete row

of the relation represents a single Observation. Many Cubes can reference the same

Dimensions, Members, Cells, and Measures, whereas each Observation belongs to

exactly one Cube. Table 4.4 provides examples for each of the concepts introduced.
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Figure 4.6. The Logical Data Structure expressing the representation of Cube Data
Sets within the UDC data structure, using the visual data modeling language de-
scribed in [26].

A Member is a unique entity within a Dimension, identified by a single Code.

Codelists are controlled vocabularies for referring to Members. A Code is a string

within a Codelist that refers to a specific Member. Each Codelist contains Codes that

refer to Members of a single Dimension. The metadata of a Cube Data Set defines

how some columns of the relation can be interpreted as Dimensions. This metadata

is used for transforming the strings in each row of Dimension Columns into Member

instances within the UDC data structure.

The Logical Data Structure (LDS) shown in figure 4.6 expresses the essential

concepts of the UDC data structure and their relationships. This data structure is

used to represent Cube Data Sets after they are loaded into memory. Cube Data Sets

loaded into this data structure can be integrated together and queried for interactive

visualization.

The following functions transform Data Sets into in-memory representations and

help integrate multiple Cube Data Sets together.

• createCube(dataset)→ cube
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• createThesaurus(datasets)→ thesaurus

The createCube algorithm creates a Cube (from figure 4.6) from a Cube Data Set.

This procedure must iterate through each Dimension Column and Measure Column

of the Data Set to compute the Dimensions and Measures associated with the Cube.

Once the metadata has been processed, each row in the relation of the Data Set

is transformed into a single Observation. In computing Observations, the requisite

Members and Cells are also defined within the in-memory data structure.

The createThesaurus function generates an index that can be used to implement

the canonicalizeMember function necessary for merging Cubes. The set of Data

Sets input to the createThesaurus function should each be a Concordance Data

Set. This means they each have only Dimension Columns that refer to Members of

the same Dimension using different Codelists. The relations of Concordance Data

Sets serve only to define equivalences between Codes from different Codelists that

refer to the same Member. These relations are transformed into an index that maps

each (code, codelist) pair to a set of other (code, codelist) pairs that refer to the same

Member. The index of equivalence classes can be used in conjunction with a canonical

Codelist for each Dimension to implement the canonicalizeMember function. A

canonical Codelist can be chosen by sorting all Codelists used in a given Dimension

alphabetically and choosing the first one.

4.4 Querying Data Sets

Cubes can be queried by interactive visualizations. Interactive data visualizations

need to make a number of different queries for generating user interface components,

labels, axes, scales, and visual marks. We assume that a visualization has access

to a single Cube containing the integrated data. Starting from the Cube object

the following functions provide all queries necessary for general purpose interactive

visualizations to operate. This syntax represents functions in terms of their name
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(before parentheses), what they accept as input (in parentheses), and what they

yield as output (after the arrow). Types are denoted as lower case counterparts to

UDC concepts, because they represent concrete instances of those concepts.

• listDimensions(cube)→ [dimension]

• listMeasures(cube)→ [measure]

• listObservations(cube)→ [observation]

• getV alue(observation,measure)→ R

• getCell(observation)→ cell

• member(cell, dimension)→ member

• slice(cube, cell)→ cube

The listDimensions, listMeasures and listObservations functions list which

Dimensions, Measures, and Observations, respectively, are associated with the given

Cube. The getV alue procedure extracts the numeric value for a given Measure from

a given Observation, by evaluating its values property (which maps Measures to

numeric values). The getCell procedure reads from the data structure which Cell is

associated with the given Observation. The member procedure extracts from the data

structure which Member is contained within the given Cell for the given Dimension.

The slice procedure implements the traditional OLAP slice operation defined in [43].

4.5 Integrating Data Sets

The following procedures relate to integrating Cubes:

• canonicalizeMember(thesaurus,member)→ member

• canonicalizeCube(thesaurus, cube)→ cube
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• mergeCubes(cube, cube)→ cube

• integrate(datasets)→ cube

The canonicalizeCube function transforms a Cube such that all of its Observations

use canonicalized Members. When two Data Sets use different Codes to refer to

the same Members, the Cubes generated directly from the Data Sets define their

Observation domains (Cells) in terms of different Members. A Thesaurus can be used

to implement the canonicalizeMember procedure, which resolves equivalent Members

referred to using Codes from different Codelists. The canonicalizeCube function

invokes canonicalizeMember as a subroutine to normalize the Observations of the

Cube. After running canonicalizeCube on two Cubes that use different Codelists,

both resulting Cubes use the same Codes to refer to the same Members. This step

enables the two Cubes to be merged using mergeCubes.

The mergeCubes procedure joins the Observations from two Cubes by matching

on their Cells. Each Cell is identified by a unique set of Members. Cells from both

Cubes match because the canonicalizeCube procedure was invoked previously on

each input cube. In implementing mergeCubes, one could employ an inner join

strategy, which would yield a Cube with no missing data but may not include all of

the original data, or an outer join strategy, which would yield a Cube with missing

data (Observations with missing values for some Measures) but would include all of

the original data.

Figure 4.7 shows the integrate algorithm for integrating many Data Sets. This

algorithm first transforms all Cube Data Sets in the input datasets array into Cubes

using createCube, and constructs a Thesaurus from all Concordance Data Sets in the

input datasets array using createThesaurus. A map-reduce pattern is then applied to

integrate all Cubes. The map portion of the algorithm applies the canonicalizeCube

function to all Cubes, using the already created Thesaurus to canonicalize Members

used in each Cube. The reduce portion of the algorithm applies the mergeCubes func-
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Figure 4.7. The flow of the integrate algorithm for integrating data.

tion to merge all canonicalized Cubes recursively. The result from the entire algorithm

is a Cube that contains data from all of the input Cubes combined and integrated

properly. The resulting Cube is suitable for input into interactive visualizations.

4.6 Limitations of Data Cube Representation

Many, but not all, data sets can be modeled as data cubes. Since data cubes are

only capable of representing data that has been aggregated along categorical dimen-

sions, there are many classes of data that do not fit within the conceptual framework

of data cubes. For example, a database containing the details of transactions in a
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supermarket would not be appropriate to model as a data cube. Each entry of a cus-

tomer purchase may contain a listing of items purchased, how it was paid for, and the

date and time the purchase was made. This kind of data fits well into the relational

model, but is not appropriate to model as a data cube. Data cubes represent only

aggregated summaries, not individual events. In the case of grocery store database

containing the transactions for many grocery stores in different regions, while the indi-

vidual transaction entries cannot be modeled as a data cube directly, a data cube can

be constructed from the transactional data by aggregating measures such as “amount

paid” and “number of items purchased” along dimensions such as “time”, “region”

and “product category”. This is a typical data warehouse scenario, where a business

aggregates transactional data into a data cube in order to analyze company activities

in a summary view.

The key characteristics that allow a given data set to be modeled as a data cube

are as follows:

• The data set contains numeric fields that represent aggregated summaries using

sum, average, or some other aggregation operator (measures).

• The measures of the data set are aggregated along one or more sets of discrete

categories or entities (dimensions).

Dimensions can be either unordered, ordered, or hierarchical. Dimensions include

Space, defining hierarchies of geospatial regions, Time, defining intervals in time, or

of any arbitrary collection of categories. Examples of dimensions other than Time

and Space include Gender, Ethnicity, and Industry. The Space dimension can be

decomposed using several alternative strategies. The most common spatial decom-

position found in data is along geopolitical boundaries. Another way to decompose

spatial regions is according to a quadrilateralized spherical cube, also called a quad

sphere [142]. The quad sphere approach provides uniformly distributed regions at
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multiple levels of detail, which makes it appropriate for presenting aggregated sum-

maries of more detailed data such as billions of points on Earth or satellite imagery

data [152]. Yet another alternative geospatial partitioning strategy is by global river

basins. Partitioning data by river basins makes sense for climate and weather related

data [9].

Data sets that have the following qualities may not be modeled directly as data

cubes.

• The data set represents a graph. Graph data such as social network connections

or links between Web pages is not supported by the data cube model.

• The data set contains relational data with a one-to-many relation. For example,

a database of transactions in a grocery store where one transaction has many

items. Items containing lists of other items cannot be represented using the

data cube model. However, one may consider transforming data sets like this

such that the nested lists are summarized by some measures (such as total cost

or number of items) so the data cube model can be applied.

• The data set contains entries for individual discrete events or transactions. Data

sets with this quality cannot be modeled directly as data cubes, however it may

be possible to compute data cubes by aggregating them using OLAP techniques

from data warehousing.

Although data sets with the above qualities may not be modeled directly as data

cubes, it may be possible to compute data cubes that summarize data sets like these.

For example, the BrightKite data set which was originally structured as a graph [28]

can be aggregated using the data cube approach then visually analyzed [99, 100].

Any graph data set in which nodes contain metadata such as location and time can

be aggregated along Space, Time and other dimensions to form a data cube.
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Figure 4.8. The United Nations Population Prospects data set [112], made available
in Excel format. This is an example data set that can be imported into our data
structure and integrated with other data sets.

4.7 Proof of Concept

The United Nations (UN) Population Prospects Data Set provides population

data for each country of the World over time. A small sample of this data set is

shown in table 4.1. This data set was downloaded as an Excel spreadsheet (shown

in figure 4.8), exported as a Comma Separated Value (CSV) file, then transformed

to be in the format expected by a data cube dataset (one row for each Observation).

This data set uses the UN M.49 country codes to refer to countries. Figure 4.9 shows

a slice of this data set showing population values over time for the entire world. This

visualization gives a broad overview of the data. By drilling down, lines in the line

chart can be made to represent individual countries.

The World Bank publishes publicly available data about a number of topics. One

dataset from the World Bank contains the Gross Domestic Product (GDP) of each

69



Figure 4.9. A timeline visualization of the United Nations Population Estimates
data set. This shows the population of the entire world from 1950 to 2010.

country over many years, shown in figure 4.10. A small sample of this data set is

shown in table 4.2. This data set uses the ISO3 standard Codelist for countries.

We applied the UDC approach to modeling and integrating the UN Population

Prospects data set and the World Bank GDP data set. The resulting integrated

Cube was visualized as a scatter plot, shown in figure 4.11. In this visualization,

Population is mapped to the X axis, GDP is mapped to the Y axis, and each dot

represents a country. Both axes are log normalized in order to spread the data. This

plot shows that there is a correlation between Population and GDP, and that both

measures follow roughly a Power Law distribution. This demonstrates a proof of

concept implementation of the UDC data structure and algorithms for integrating

and visualizing public data.

Consider the steps required to produce the scatter plot visualization of the in-

tegrated Population and GDP Cube shown in figure 4.11. First, the dimensions of

the integrated Cube, namely Time (Years) and Space (Countries), can be computed

using the listDimensions function. Since we want each dot to represent a country,
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Figure 4.10. The World Bank GDP Data Set.

the Cube must then be sliced using the slice function such that it contains only data

for a single year. Next, the X and Y scales must be defined. The listMeasures pro-

cedure can be used to generate a list from which users can choose which measures to

assign to the X and Y axes. Once X and Y measures are chosen, the listObservations

procedure can generate the list of Observations to transform into visual marks (one

for each Country). To compute the domains for the X and Y scales, the Observations

can be queried for their X and Y measure values using the getV alue procedure. The

minimum and maximum values returned for the X and Y measures can define the

domains for the X and Y scales. Once the scales have been defined, the Observa-

tions can be iterated over once more to generate the complete visualization. This is

one example of how the given query algorithms for Cube Data Sets can be used for

visualization.

71



Figure 4.11. A scatter plot visualizing two data sets integrated together. The X
axis shows Population, drawn from a United Nations data set, and the Y axis shows
GDP, drawn from a World Bank data set. Each dot represents a country.

The slice procedure can be utilized for developing visualizations with multiple

linked views. This is when one visualization shows an overview, and interactions in

that visualization can define how the input data for another visualization is sliced

before it is visualized. We have implemented a prototype of this concept which uses

a linked Choropleth Map and Line Chart, shown in figure 4.12. Zooming in the

Choropleth Map defines the set of countries represented as lines in the Line Chart.

Selecting a year in the Line Chart causes the Choropleth Map to show data for that

year only.

4.8 Crowdsourcing Data Experiment

Rather than manually curating data, a crowdsourcing approach can be taken to

data collection for the UDC. We have performed an initial experiment to test the

feasibility of this approach. Amazon Mechanical Turk supports assignment of tasks,
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Figure 4.12. A linked line chart and Choropleth map showing population data from
the United Nations. Zooming in the map filters the line chart. Selecting a year in the
line chart causes the map to show data from that year. This demonstrates how the
slice procedure can be utilized for generating interactive visualizations with linked
views. Red indicates missing data.
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called “Human Intelligence Tasks” or HITs, to workers who get paid small amounts

(on the order of cents) to execute the tasks. To populate the UDC using Mechanical

Turk, HITs can be devised that ask workers to find an answer to a simple question like

“What was the population of India in 1950?”. This question is an instance of a more

general form “What was the ${measure} of ${place} in ${time}”. By enumerating

possible values for ${measure}, ${place}, and ${time}, responses to such HITs can

populate large regions of the UDC.

To test the crowdsourcing data collection approach, an experiment was performed

using Amazon Mechanical Turk. In this experiment, ${measure} = population,

${place} = {India, China, United States}, and ${time} = {1950, 2010}. The results

contained between 7 and 10 responses from multiple workers for each combination of

place and time. By taking the mode (most frequently occurring value) of the worker

submissions for each combination of place and time, the following table was generated:

Place Time Population Source URL
India 1950 369880000 www.geohive.com/earth/population3.aspx

China 1950 563000000 geography.about.com/od/populationgeography/a/chinapopulation.htm

USA 1950 150697361 en.wikipedia.org/wiki/1950_United_States_Census

India 2010 1150000000 www.indiaonlinepages.com/population/india-population.html

China 2010 1339724852 en.wikipedia.org/wiki/Demographics_of_China

USA 2010 308745538 en.wikipedia.org/wiki/United_States_Census

Figure 4.13. Initial results from an experiment in crowdsourcing public data using
Amazon Mechanical Turk.

In the table shown in figure 4.13, each row represents an observation within the

data cube. The values in the Place column refer to members of the Space dimension.

The values in the Time column refer to members of the Time dimension. The values

in the Population column assign numeric values to cells (combinations of Space and

Time members) for the Population measure. This initial result demonstrates the

feasibility of crowdsourced data collection for the UDC.
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4.9 Summary

This chapter introduced novel data structures and algorithms for integration of

multiple data sets, and for querying the merged data structure for use in interactive

visualizations. We call this collection of data structures and algorithms the Universal

Data Cube (UDC). This approach functions by using concordances to canonicalize

identifiers used across data sets, then merging data cubes in a map-reduce fashion.

The resulting integrated structure can be queried for generation of interactive visual-

izations. Future work will focus on developing reusable interactive visualizations that

can use the UDC data structure as input, and on a framework for easily assembling

linked views based on the UDC data structure.
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CHAPTER 5

CONCLUSION

Data today is growing in both size and variety. By modeling the data within

a data cube based framework, it is possible to tame the vast collection of various

representations of complex data into a predictable structure. This simplified data

model imposes structural restrictions on the data, and in doing so makes the data

more amenable to interactive visual analysis.

5.1 Contributions

The contributions of this dissertation are novel data structures and algorithms

covering a broad range of the data visualization pipeline. The Universal Data Cube

data model is an attempt at providing a data model that both captures the essence

of many data sets and exposes a simple and predictable data structure upon which

interactive visualization systems can be built. The Reactive Visualization approach

is the first to synthesize the Model View Controller paradigm with functional reactive

programming to construct reusable interactive visualization components. Dynamic

visualization configuration allows reusable visualizations to be instantiated within the

context of many data sets and allows users to collaborate in real time over interactive

visualizations. Taken together, these contributions represent a new approach to the

process of integrating and visualizing data.

Reactive models provide the foundation for reactive visualizations. This approach

allows the construction of reusable reactive flows that encapsulate elements of inter-

active visualizations. Using reactive flows, much of the data visualization pipeline
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can be implemented. Reactive flows enable representation of update flows from data

and configuration through to visualization scales, axes and visual marks. In theory,

any imaginable visualization technique can be implemented as a reactive visualization

component. The prototypes presented in this dissertation serve as a starting point

for a growing catalog of Open Source visualization modules.

Interactions such as brushing, picking and zooming can also be encapsulated using

reactive models. The interactions in one visualization can be used to drive interactive

changes in other visualizations. In this way visualizations with multiple linked views

can be constructed. Interaction schemes for linked views include dynamic filtering,

slicing, linked selection and linked probing. For example, zooming in a map can filter

the regions used to filter the input to a line chart of population. This technique of

using interaction for dynamic slicing can be used to build data cube exploration tools

that replace small multiples with interactive linked views.

An application state model based on reactive models provides the foundation

for a collaborative visual data exploration platform. Application state configuration

based on JSON enables configuration of visualizations with multiple linked views. A

unique runtime engine is introduced for configurable applications that dynamically

loads required modules. Using this framework it is possible to author and evolve

instantiations of reusable visualization components with linked views. The application

state model also affords construction and navigation of history graphs supporting

undo, redo, and view sharing.

The Universal Data Cube framework proposes a framework for representing data

based on the data cube model. This framework is “universal” in that it is capable

of representing aggregated summaries of any measurable quantity over limitless time

and space. The Time and Space dimensions provide conceptual delineations between

regions of hierarchical time and space. Measures provides windows into phenomena

occurring within certain regions of time and space. In theory, all measurable quanti-
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ties that summarize events and phenomena can be represented using this framework.

The limited Open Source proof of concept implementation of the UDC framework

is proposed as the seed for a large ongoing project aimed at curating and exposing

public data.

By combining the data curated within the UDC and the proposed visualization

and collaboration frameworks, the aim is to provide a complete platform for data vi-

sualization. The hope is that this platform will enable Web users and content creators

to easily investigate any data of interest using interactive data visualization. Applica-

tion areas for this technology include commercial data analysis, business intelligence,

education, journalism and public policy.

5.2 Future Work

The realization of this work so far is far from the complete vision. The vision

is to establish a Wikipedia-like platform for collaborative data visualization. The

technologies presented in this dissertation provide the foundation for such a system,

but more work needs to be done to glue the pieces together into a complete and

coherent suite of tools.

The reactive model solution introduced has the potential to be formalized as a

time tick based execution system. This kind of formalization would allow a rigorous

asymptotic analysis of reactive models based on their data flow graph structure. For

example, one could quantify the influence of various graph characteristics such as

total number of nodes and breadth first search tree distance from a node that is the

source of a change.

The Universal Data Cube data model has the potential to be implemented within

a database. This would involve the construction of a database schema that persists

the UDC model and allows users to query the data present. The overall effect of

maintaining a UDC database is that common dimensions and measures will become
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clear. Given a collection of 100 data sets, a UDC database could keep track of

the total list of all dimensions and all measures. For each dimension, the database

could tell you how many data sets use it, and what the most common key codes

are. The database could also provide information about measures such as how many

measures there are, how many data sets cover each measure, and what dimensions

and members are covered by each measure. These kinds of queries could be coupled

with visualization interfaces to present a rich overview of a large collection of data

and support unprecedented visual data exploration capabilities.

The envisioned collaboration framework would be a database driven Web appli-

cation enabling users to import their own data, add their own reusable visualization

components, and collaboratively author interactive visualizations. User interfaces

supporting these operations must also be developed. For importing data sets, a sim-

ple solution similar to the ManyEyes data import user interface would suffice [147].

For adding reusable visualization components, an in-browser code editing tool with

versioning would be required (similar to JSBin). For collaboratively authoring in-

teractive visualizations, the dynamic configuration structure can be linked with an

operational transformation system such as ShareJS or Firebase. States of interest

must be persisted to a database for later viewing or further editing. Existing col-

laboration platforms that already track data sets such as OpenChorus [93] could be

extended to include interactive visualizations. The visualization state created by users

can be simply persisted as a string in the application database.

The UDC visualization technology can be extended to accommodate real time

updating data. This could be accomplished by polling for data updates or using a

server push technology such as WebSockets. For updating data, the data values of

the most recent time slice of the data cube may change. For granular time slices

such as hours or days, new Time dimension members are created as time passes, so
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new slices of the data cube could be sent from the server to clients as they become

available.

Mobile technology could be one of the largest targets for interactive visualization

technology. For example, many readers of popular news feeds such as the New York

Times consume their content using mobile devices such as smart phones, phablets and

tablets. The same is true for E-Books and blogs. With this in mind, considerations

must be made regarding how to tailor the proposed interactive visualizations to mobile

devices with touch screen interfaces and variable resolution.

Only a few reusable visualization components have been implemented and a few

data sets imported into the framework so far. The following sections discuss devel-

opment of more reusable visualization components, more interaction techniques, and

importing of more data sets into the UDC framework.

5.3 Visualizations and Interactions

The complete set of visualization techniques suitable for adaptation as reusable

components is vast. Bertin enumerates the numerous possibilities for visually encod-

ing data [13]. This is why an expandable user-driven platform is more suitable than

a fixed set of visualizations. As a first step toward the goal of an open platform with

the potential to accommodate any imaginable visualization technique, an initial set

of visualization techniques are presented here in table 5.1.

These visualizations can be augmented by interaction techniques such as brushing,

picking, hovering, pan and zoom. Each of these interactions results in a user defined

subset of the data visualized. The output from the interaction in any visualization

can be used to slice or filter the input of another. Brushing involves the interactive

visual definition of a rectangular region that defines intervals in data space. The

intervals defined by a brush region can be used to filter the original data, allowing

users to interactively define subsets of the data. Picking involves tapping or clicking
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on a single visual mark. Hovering (also called probing) selects the single visual mark

closest to the mouse. Hovering can use a Voronoi overlay to improve performance.

Panning and zooming can be used on a geographic map to define a subset of regions.

Conceivably, pan and zoom could also be implemented in other visualizations such as

scatter plot.

5.4 Data Sources

There are numerous rich data sources on the Web that are suitable for import

into the Universal Data Cube framework for visualization. So far only a few data

sets have been actually imported, however many have been evaluated and identified

as candidates. Some data sources provide archives of historical data, while others

are vastly large and expose the data via a Web API. Crowdsourcing platforms also

present immense potential for finding data sources and curating data.

The Pew Global Religious Landscape data set provides data about religious com-

position by country. This data set covers dimensions of Time (only the 2010 slice is

provided), Space (countries), and Religion. The measure can be modeled as Popula-

tion, as the addition of the Religion dimension effectively is a filter through which to

view the population of a place. This data set can be enhanced by integration with a

data set providing population data for each country of the World in 2010.

For each country, it is possible to visualize the data cube slice for that country

as a bar chart in which each bar represents a religion. Therefore a visualization with

linked views can be assembled in which picking interaction in a choropleth map can

drive the country used as input for the bar chart. Clicking on each country would

show its religious profile as a bar chart. This linked visualization would use the map

to visualize and navigate the Space dimension, and the bar chart to visualize the Pop-

ulation measure by the Religion dimension. Together, the map and bar chart could

visualize a data cube with 2 Dimensions (Space, Religion) and 1 Measure (Popula-
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Table 5.1. Reusable Data Cube Visualizations.

Name Thumbnail Description

Bar Chart

1 Dimension (bar)
1 Measure (bar height)
Optionally:
Picking interaction (click on bar)

Pie Chart

1 Dimension (slice)
1 Measure (slice size)
Optionally:
Picking interaction (click on slice)

Scatter Plot

1 Dimension (mark)
2 Measures (X, Y position)
Optionally:
+1 Dimension (symbol)
+1 Measure (size)
+1 Measure (color)
Brushing interaction (2D)

Parallel Coordinates

1 Dimension (polyline)
N Measures (one for each parallel axis)
Optionally:
Brushing interaction for each axis

Choropleth Map

1 Dimension, Space (geographic region)
1 Measure (color)
Optionally:
Small multiples visualization overlay
Picking interaction (click on region)
Pan & Zoom interaction
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Table 5.2. Reusable Data Cube Visualizations (continued).

Name Thumbnail Description

Sunburst

1 Dimension, Hierarchical (slice)
1 Measure (slice size)
Optionally:
Picking interaction (click on slice)

Icicle

1 Dimension, Hierarchical (rectangles)
1 Measure (rectangle length)
Optionally:
Picking interaction (click on rectangle)

TreeMap

1 Dimension, Hierarchical (rectangles)
1 Measure (rectangle area)
Optionally:
Picking interaction (click on rectangle)

Streamgraph

2 Dimensions, (Time, streams)
1 Measure (stream thickness)
Optionally:
Picking interaction (click on stream), or
Picking interaction (click on time), or
Brushing interaction (across Time)
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tion). The original data cube included the Time dimension as well, which effectively

gets eliminated by taking only the 2010 slice as input. If historical data were available

for each year, a line chart could be paired with the linked visualization to visualize

and navigate the Time dimension.

The Religious Landscape data set can also be visualized as bar charts (or pie

charts, or donut charts) overlaid on a geographic map. The bar charts can be squares

with area representing population. Each bar within the square represents a religion.

By pairing size of the bar chart with population, area corresponds to quantity of

people accurately. In other words, each pixel on the screen inside a bar represents a

fixed number of people. Visually, this makes sense because the human visual system

naturally experiences and assesses sizes of things based on their area. [143] Pie charts

could also be overlaid on a geographic map to express the same information.

Whether pie charts or bar charts, the embedded visualizations are at risk of occlud-

ing each other when plotted directly centered at the centroid of their corresponding

regions. This can be overcome by using a force directed layout that repels embedded

visualizations away from one another such that each is fully shown and not occluded

by others. A similar technique has been used previously in cartography to produce

cartograms based on circles (Dorling Cartogram) and squares (Demers Cartogram)

[141].

Note that the geographic visualization overlay presents the same information as

the above described linked map and bar chart interactive visualization. Rather than

clicking on a country, the user can now just look at the center of any given country

on the map to assess its religious breakdown. In this way, the geographically overlaid

visualizations communicate more information at a time than the linked views.

The geographic bar chart visualization could also be augmented by a line chart

if historical data is also available. The line chart could visualize the Time Dimen-

sion as a streamgraph chart showing global religious breakdown over time. Picking
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interaction for years in the streamgraph can define the Time slice used as input to

the other visualizations. This is one example of the general case that adding another

visualization with picking interaction can effectively add another dimension to the

data space users are capable of navigating with the visualization interface.

DBPedia is a knowledge graph representation of Wikipedia. DBPedia data is

represented using RDF (Resource Description Framework), the World Wide Web

Consortium standard knowledge graph representation for the Semantic Web [90]. In

DBPedia, each Wikipedia Page about an entity is classified according to the DBPedia

Ontology [17]. Resources in DBPedia can be aggregated along the DBPedia Ontology

to produce a data cube that can be visualized. For example, one could visualize the

count of resources for each ontology class using a Sunburst or Icicle visualization.

Since resources have (lat, long) coordinates and associated dates, they can also be

aggregated along Space and Time.

OpenStreetMap (OSM) is a community maintained crowdsourced geographic data

repository [64]. The OSM database contains entities of numerous types including

roads, points of interest, educational institutions, churches, buildings, military bases,

shops, and public transit stations [33]. Any of these types can be counted across

geographic space and used as indicators. For example, the number of buildings can

be used to approximate population at a high resolution. Map features can also be

aggregated by type and visualized to show the breakdown of the database.

The 2014 global Ebola outbreak is being monitored closely. Structured data about

the outbreak is available and updating every day. This data provides measures “num-

ber of Ebola deaths” and “number of Ebola cases” for each affected West African

nation for each day since the outbreak began. The New York Times published a

graphical piece including a small multiples visualization of Ebola [140]. This is a

topic prominent in the news today. A dynamically updating visualization for this

data would be indispensable for journalists and decision makers alike.
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Figure 5.1. A small multiples line chart visualization of the 2014 Ebola outbreak
in West Africa published by the New York Times [140]. This visualization shows the
number of Ebola cases and deaths by day by region.

The Global Terrorism Database provides historical data about terrorist activities

such as attacks with their time, place, and number of deaths. With daily news on ISIL

(Islamic State of Iraq and the Levant), this live updating data set is a valuable resource

for many people including journalists, policy makers, or anyone interested in learning

about terrorist related events. This data can be aggregated into a data cube covering

dimensions Time (nested structure of years, months, days), Space (geographic region),

and providing the measure of number of deaths. This data could be visualized as a

linked line chart and choropleth map. Picking in the line chart slices data used as

input to the choropleth map. Zooming in the choropleth map dices the data shown in

the line chart. This is similar to the linked view visualization of population described

in figure 4.12.

Crowdsourcing may also be a promising approach for collecting and curating data.

Each combination of region, time and measure can be formulated as an English ques-

86



tion, such as “What was the GDP of India in 1970?”. Crowdsourcing platforms such

as Amazon Mechanical Turk and Crowdflower can potentially be utilized to collect

data. Workers may also be asked to enter the URL from which they found the data

value. These URLs can be used to glean the structure of what is covered by various

data sources, which can in turn be used to suggest URLs to future workers for certain

regions of the data cube structure. Using this approach, it may be possible to de-

velop an automated service that collects requested data on demand. Crowdsourcing

techniques can also be used to refine the quality of the data collected.

5.5 A Grammar of Graphics Approach

A system based on named visualizations (e.g. ”Scatter Plot”, ”Bar Chart”) al-

lows each visualization to have their own implementation, and does work. However,

this approach is limited in that it does not take advantage of the deeper structure

of visualizations. Leland Wilkinson’s ”Grammar of Graphics” describes a language

for expressing many types of visualizations using a single grammar [155]. Hadley

Wickham has implemented this grammar and extended it in the R package ggplot2

[154, 153]. A JSON-based grammar of graphics called VisJSON has also been devel-

oped [24].

Incorporating a grammar of graphics implementation into the proposed visualiza-

tion platform would allow configuration of powerful and complex linked visualizations

using a minimally complex structure. Each visualization on a page could be described

by a grammar of graphics expression, rather than invoking a module that implements

a named visualization. This kind of system would be much more elegant. One ad-

ditional benefit of this organization is that when new features such as interaction

techniques are implemented in the grammar of graphics engine, all visualizations im-

mediately have the new interaction available. In a named visualization system, the

interaction would need to be implemented once per visualization module.
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One path to a grammar of graphics based approach within the existing reactive

visualization framework is to create a grammar based solution that can express in-

crementally more visualizations. In this sense, it is essential to first have developed a

named visualization approach, then start on the grammar of graphics approach. For

example, a grammar of graphics based solution can be introduced that first can gen-

erate a scatter plot, then a bar chart, then a pie chart, then a stacked bar chart. As

the implementation grows in completeness, named visualizations can be incrementally

replaced with expressions in the grammar.

5.6 Final Thoughts

The hoped for eventual impact of this work is to enable common everyday people

to understand their world better through data visualization. By providing a basis

on which complex interactive visualization systems can be built and tailored to the

data at hand, this work paves the way for future researchers and developers to create

visualizations that represent data clearly and can be understood by many. Whether

seen on a news site, included in a corporate report, or developed for scientific research,

the impact of interactive data visualizations on users is immense and immediate.

If over time more and more data sets are imported into the UDC framework,

made available publicly, and visualized, the phenomenal world will be covered more

and more thoroughly by the reach of digitized information and visual presentations

of it. Data and visualizations about various aspects of the world will become ever

more commonplace, and part of common knowledge. With the advent of social media,

sharing visualizations over the Web allows them to reach huge audiences very quickly.

As time passes, select visualizations may become iconic, such as Minard’s map of

Napoleon’s march has already. Such visualizations could eventually become “required

reading” for academic courses of study. As such they could be integrated as interactive

visualizations within E-Books being consumed via tablets or laptops.
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There is a concept called “Mirror World” envisioned by Computer Science Pro-

fessor David Gelerntner in which computers attain a kind of digital mirror of reality

[59]. This dissertation introduces a means to define and populate a mirror world in

terms of data cube aggregates, and also introduces a means to present the resulting

data based view of the world via interactive visualizations. The hierarchical regions

of Time and Space delineated by humans serve as the skeleton for our mirror world,

and any measurable quantitative value that varies across Time, Space and additional

dimensions can be incorporated into this mirror world. As more data becomes avail-

able, shedding digital light on the mysterious analog world, people will be able to

understand the world around them more clearly through data visualization.
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APPENDIX A

PSEUDOCODE CONVENTIONS

Throughout this document, pseudocode is used to express data structures and

algorithms. The pseudocode used is similar to that found in the book “Introduc-

tion to Algorithms” [36], but differs significantly in that it uses a functional style.

Primitive types in our pseudocode include numbers, strings, booleans, arrays, objects

and functions. The following examples demonstrate the features of this pseudocode

language.

1 x = 5

Line numbers appear to the left of each line of pseudocode. Variables can have

any name comprised of characters without spaces, and can be assigned a value with

the = symbol. Variables need not be explicitly declared. The scope of a variable is

determined by where it is first assigned. Our pseudocode uses block scope, meaning

that every indentation level introduces a new nested scope. On line 1 of the above

pseudocode example, the variable x is defined and assigned the value of 5, a numeric

literal.

The following pseudocode demonstrates numbers, strings and booleans.

1 myNumber = 5

2 myString = ’test’

3 myBoolean = true

4 myOtherBoolean = false

90



All numbers are treated as double precision floating point. Numeric literals in

pseucode become numbers (see line 1). String literals are denoted by single quotes

and a monospace font (see line 2). Booleans can be either true or false. True and false

are builtin constant boolean values denoted by all capitalized words (see lines 3 and

4). Camel case names starting with a lower case letter are used for most variables in

our pseudocode.

1 add = λ(a, b)

2 return a+ b

3 result = add(4, 6) // result is assigned the value 10

4 triple = λ(x) return x ∗ 3

5 triple(3) // evaluates to 9

The above pseudocode demonstrates how a function is defined and invoked, and

also introduces comments. This example defines a function called add (on lines 1 and

2) that adds two numbers together. The λ (lambda) symbol defines a new anony-

mus function. Variables can be assigned functions as values using =. The comma

separated names in parentheses directly following the λ are the arguments to the

function. The pseudocode on lines following the λ that is indented one level consti-

tutes the function body (also called the function closure). The function arguments

are only visible inside the function closure.

Functions can be invoked using parentheses. The argument values are passed to

the function in a comma separated list within parentheses. On line 3, the add function

is invoked, passing the value 4 as argument a and 6 as argument b. The value returned

by the function is assigned to the variable result. The function invocation causes the

function body to execute, which adds the two numbers together and returns the

resulting number using the “return” keyword on line 2. Lines 4 and 5 demonstrate

that a simple anonymous function can be defined in a single line. Text following the

// symbol is a comment, and is not executed.
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1 myArray = [ ]

2 myArray.push(5) // myArray now contains [5]

3 myArray.push(7) // myArray now contains [5, 7]

4 myArray.push(9) // myArray now contains [5, 7, 9]

5 myArray[0] // evaluates to 5

6 myArray[2] // evaluates to 9

7 myArray[1] = 3 // myArray now contains [5, 3, 9]

8 myBooleanArray = [true, false,true,true]

9 myStringArray = [’foo’,’bar’]

10 numberOfBooleans = myBooleanArray.length // evaluates to 4

11 numberOfStrings = myStringArray.length // evaluates to 2

12 for str ∈ myStringArray

13 log(str) // prints ’foo’ then ’bar’

14 myArray.map(triple) // evaluates to [15, 21, 27]

The above pseudocode demonstrates arrays. Arrays are ordered lists of elements.

Arrays can contain elements of any type. Array literals are denoted by square brackets

and can be empty (as in line 1) or populated (as in lines 8 and 9). Arrays have a

built-in function attached to them called push, which appends a new element to the

end of the array. Lines 2-4 demonstrate how push can be used to append items to

an array. The dot notation seen on lines 2-4, 10-11 and 14 is used on arrays only to

access the following built-in array functions and properties.

• length the number of items in the array

• push(item) appends an item to the end of an array

• map(callback) calls callback(item) for each item in the array

Square brackets denote access of array elements by index when placed directly

after the array variable. Lines 5 and 6 demonstrate how square bracket notation can
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be used to access values in an array based on their index. Line 7 demonstrates that

square bracket notation can also be used to assign to values in an array. Lines 10 and

11 demonstrate the built-in property length, the number of elements in the array.

Array indices start at zero.

Line 12 introduces the for loop construct. A for loop iterates over each element in

the array. The indented code block following the for loop construct is executed once

for each item in the array. In this example, each item is bound to the variable str,

which is only visible within the for loop body. Line 13 invokes the built-in function

log(message), which prints out the message passed into it to.

Line 14 introduces the map construct. The built-in map(iterator) function applies

the given iterator(item) function to each item in the array, and returns a new array

populated with the returned values from iterator. In this example, the function triple

defined earlier is applied to each element in the myArray array, yielding a new array

with all values tripled.

1 myObject = { }

2 myObject.first =’John’ // myObject now contains {first :’John’}

3 myObject[’last’] =’Doe’ // now {first :’John’, last :’Doe’}

4 myOtherObject = {first :’Jane’, last :’Doe’}

5 box =

6 x : 50

7 y : 60

8 width : 100

9 height : 150

10 keys = keys(box) // evaluates to [x,y,width,height]

11 values = keys.map(λ(property) return box[property])

12 // values is assigned [50, 60, 100, 150]

13 box[’nonexistentProperty’] // evaluates to nil
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The above pseudocode introduces objects. Objects are key-value mappings (some-

times called maps or dictionaries). Curly braces denote single-line object literals.

Line 1 assigns the variable myObject to an empty object. Object properties can be

assigned using dot notation, as in line 2, or square bracket notation, as in line 3.

Bracket notation is useful when the property name is stored as a string in a variable.

Object literals can contain key-value pairs denoted by key : value as in line 4. When

an object literal spans multiple lines, the curly braces are omitted and the key-value

pairs are indented, as in lines 5-9. Line 10 introduces the built-in function keys, which

evaluates the keys of an object into an array. Line 11 demonstrates how the values

of an object can be extracted into an array using the array map construct. A special

value nil is returned when attempting to access nonexistent object properties, as in

line 13.

Our pseudocode assumes a single threaded execution environment with a built-in

event loop, which may be implemented using the reactor pattern [126]. The event

loop can be used to queue functions to be executed in the future. In our pseudocode,

the run built-in function provides access to the event loop. Calling run and passing a

function queues that function to be invoked in the future, after the current codepath

terminates and all previously queued functions finish executing.

1 run(λ() log(’b’))

2 log(’a’)

3 // Prints a, then b

In the above pseudocode, line 1 queues an anonymous function that prints ’b’ to

run later, after the current codepath completes. While still inside the codepath which

queued the function, line 2 prints ’a’. After line 2 executes, the current codepath

terminates, causing the system to invoke queued function that prints b.
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APPENDIX B

OPEN SOURCE PROJECTS

B.1 Ph. D.

https://github.com/curran/phd

This repository contains the LaTeX source code for the proposal and dissertation

documents. This repository also contains source code for an early stage prototype

of the end-to-end system, including reactive models, nested box layout, several vi-

sualizations and a configuration state runtime engine. These first prototypes were

re-written and evolved to form the ModelJS and Model-Contrib projects.

B.2 ModelJS

https://github.com/curran/model

ModelJS was created in April 2014 as a simple proof of concept implementation of

reactive models. The project arose out of a recurring pattern in my data visualization

work at Rapid7 based on D3 and BackboneJS. ModelJS provides simple models akin

to JavaScript objects that expose a when method that implements eventual resolution

of reactive data flow graphs. The data flow graphs initiate an asynchronous breadth-

first graph traversal algorithm when model values are changed. The JavaScript event

loop is utilized as the queue in the breadth-first traversal. Multiple model changes

that occur within the span of a single tick of the JavaScript event loop are batched

together into a single invocation of dependent callback functions passed into the when

method.
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Figure B.1. The model-contrib project home page, showing a listing of reusable
modules on the left and a gallery of examples with screenshots for each on the right.

B.3 Model-Contrib

https://github.com/curran/model-contrib

The Model-Contrib project is a playground for creating visualizations and reusable

components using ModelJS. ModelJS contains the essence of reactive models, and all

other contributions related to ModelJS belong in Model-Contrib. This includes exam-

ple visualizations, visualizations with linked views, reusable visualization components.

Other components such as Crossfilter integration and arbitrary SQL transformations

are in Model-Contrib.

Model-Contrib includes an example viewer framework. This framework is re-

sponsible for displaying example screenshot thumbnails on the main model-contrib

page, found at http://curran.github.io/model-contrib/#/, and also for render-

ing the example detail pages. The example detail pages run the example inside the

page using an iFrame, render the README Markdown to HTML, and display the

syntax-highlighted code for each source file using CodeMirror. AngularJS is used to
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implement the example viewer client. PhantomJS and GraphicsMagick are used for

generating the thumbnail images.

B.4 Reactivis

https://github.com/curran/reactivis

The Reactivis project contains reusable reactive graphs that can be composed

together to create reusable visualization components. In this project, there is also an

implementation of reactive data flow graph computation and visualization.

B.5 Overseer

https://github.com/curran/overseer

The Overseer project implements the runtime engine for dynamic configuration

of visualizations. This project contains an implementation of the algorithm that

computes the difference between two consecutive configuration states.

B.6 UDC

https://github.com/curran/udc

The UDC repository contains a JavaScript implementation of the Universal Data

Cube API. This API is capable of loading, integrating and querying data sets rep-

resented in the UDC format. In the UDC format, each data sets consists of a data

table (CSV file) and a metadata (JSON file).

B.7 UDC-Data

https://github.com/curran/udc-data

This repository contains example data sets represented using the UDC format.

These data sets include the United Nations population data set, and the World Bank

GDP data set.
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