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Abstract

There is immense potential value in public data that is not be-

ing realized. While publicly available data sets are published on the

Web, it is difficult to realize their full value in practice because they

are made available using numerous different formats and protocols.

The heterogeneity of formats and protocols used makes it difficult to

combine and analyze data sets together, and hinders the development

of analysis and visualization tools. In this proposal, we present pre-

liminary designs for novel data structures and algorithms supporting

integration and interactive visualization of data sets from multiple

sources, based on the data cube concept. The proposed data repre-

sentation framework will allow many data sets from different sources

to be combined together and visualized using interactive visualization

dashboards with multiple linked views. The focus will be on publicly

available data, however the proposed framework can be applied to

any data collection whose components can be conceptually modeled

as data cubes.
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1 Introduction

Consider the data from the US Census that covers population statistics for US

States from 1950 to 2010. Consider also population statistics from the United

Nations covering World Countries from 1970 to 2012. These two data sets

may use different identifiers for years and geographic regions, but they cover

an overlapping conceptual data space of time, geography and population.

From these two data sets it is possible to create a visualization dashboard

with a map of the world showing population as color and a corresponding

line graph showing population for each region as lines. If the user views the

whole world, the UN population data is shown for each country. If the user

zooms into the US, US Census data is shown for each state. If the user selects

a point of time in the line graph, the data shown on the map is from that

point in time. If the user pans and zooms on the map, the lines in the line

graph update to only show the regions visible on the map.

The contributions of this dissertation are novel data structures and algo-

rithms for integration and interactive visualization of many data sets from

multiple sources, based on the data cube concept. The focus will be on

public data, however the techniques can be applied to any data collection.

The proposed data representation framework will allow data sets to be com-

bined together and visualized using interactive visualization dashboards like

the one described, giving users the sense that the data exists within a single

unified structure. The framework is designed to be able to represent and inte-
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grate an arbitrary number of data sets created independently of one another,

and expose the integrated structure to reusable visualization tools that can

be combined together in dashboard layouts with multiple linked views. The

proposed data representation and visualization framework is fundamentally

new, and will allow heterogeneous data sets to be explored in a unified way

that was never before possible.

Data cubes, also known as OLAP (OnLine Analytical Processing) cubes,

can represent data that contains measures aggregated (typically using sum or

average) along categorical hierarchies. The data cube concept emerged from

the field of data warehousing as a way to summarize transactional data,

allowing analysts to get a bird’s eye view of company activities. The term

OLAP stands in contrast to OLTP (OnLine Transaction Processing), which is

the part of the data warehouse system that ingests and stores data at the level

of individual transactions or events. After the ETL (Extract, Transform and

Load) phase of the data warehouse flow, the data is analyzed by computing

a data cube from the transactional data.

The data cube concept and structure can be used to model existing data

as well. Publicly available data sets (often termed “statistical data”) may be

considered as pre-computed data cubes if they contain aggregated measures

(also called “indicators”, “metrics” or “statistics”) across time, geographic

space, and other dimensions such as gender, age range, ethnicity or industry

sector. With this approach, it is possible to model many data sets together

using shared dimensions and measures which will allow integration of many
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data sets together in a single structure. Existing OLAP technologies as-

sume that the data cubes will be computed from a relational source, and

are not designed to handle integration of pre-computed data cubes that may

use inconsistent identifiers for common dimensions and measures. Therefore

the application of the data cube concept to integration and visualization of

many pre-computed data cubes, while theoretically plausible, requires the

development of novel data structures and algorithms that extend the data

cube model to handle integration of pre-computed data cubes that may use

inconsistent identifiers for common dimensions and measures.

The envisioned data representation and visualization framework can serve

as a digital telescope into the universe of phenomena on Earth via publicly

available data. For example, consider public data sources such as the United

Nations, the US Census, the US Bureau of Labor Statistics, or the US Centers

for Disease Control. These organizations and hundreds of others around the

world provide publicly available data about various topics including popula-

tion statistics, public health, distribution of wealth, quality of life, economics,

the environment, and many others. By unifying these data sources and pro-

viding users with tools to explore them visually, a deeper understanding of

the world can be gleaned by anyone through the lens of public data.

There is immense potential value in public data that is not being realized.

The ability to visually explore public data lends itself to applications in

education, journalism, and public policy. Especially in the era of “Big Data”,

it is increasingly valuable for organizations and individuals to have the ability
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to analyze large quantities of data from various sources that varies across

time, space, and other dimensions. In addition, publicly available data can

provide context for business-centric proprietary data analysis activities.

Figure 1: The Web-based interface provided for navigating the United Na-
tions Millenium Development Goals Indicator data sets [85]. This is one
example of the variety of formats and protocols used for making public data
available on the Web.

While publicly available data sets are available on the Web, it is difficult

to realize their full value in practice. The difficulty stems from the fact

that they are made available using numerous different representations and

protocols. For example, some data sets are made available as CSV files,
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Figure 2: The Web-based interface for downloading data from the CIA World
Factbook [2]. A data download link is provided that yields a text file using a
nonstandard table format. This is a second example of the variety of formats
and protocols used for making public data available on the Web.

Excel spreadsheets (such as the one shown in figure 6), or must be navigated

using a Web-based user interface such as the ones shown in figures 1, 2, 3

and 4. Sometimes visualization interfaces are provided for public data, such

as in figure 5, however these tools are typically extremely limited in scope

and hard-coded to the data set at hand. The heterogeneity of formats and

protocols used makes it difficult to combine and analyze data sets together,

and hinders the development of analysis and visualization tools. With the

tools available today such as D3.js, creation of Web-based interactive data

visualizations involves hard coding one-off projects to a particular data set.
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Figure 3: The Web-based interface for downloading data harvested by the
GapMinder project [45]. A data download link is provided for each indicator
that yields an Excel spreadsheet hosted using Google Docs.

Ideally, anyone should be able to apply interactive visualization tech-

niques to public data easily. This dissertation focuses on the challenges in

making this a reality, and offers a solution based on the data cube concept.

The proposed framework will reduce the effort required to create Web-based

data visualizations by linking reusable visualization templates with public

data sets that have been imported into our generalized data representation

framework.

Many, but not all, data sets can be modeled as data cubes. Since data

cubes are only capable of representing data that has been aggregated along
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Figure 4: The Web-based pivot table user interface for downloading data
from the US Centers for Disease Control about births to mothers under age
20 by demographic and year [42]. The product powering this interface is the
Beyond 20/20 Web Data Server [1]. In this interface a “download” button is
provided that yields data in CSV (Comma Separated Value) format.

categorical dimensions, there are many classes of data that do not fit within

the model. For example, a database containing the details of transactions

in a supermarket would not be appropriate to model as a data cube. Each

entry of a customer purchase may contain a listing of items purchased, how

it was paid for, and the date and time the purchase was made. This kind of

data fits well into the relational model, but is not appropriate to model as a
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Figure 5: An interactive visualization of bachelors degree statistics provided
by the National Science Foundation site [43]. This is an example of an
extremely limited visualization tool provided along with a public data set.

data cube. Data cubes represent only aggregated summaries, not individual

events. In the case of grocery store database containing the transactions

for many grocery stores in different regions, while the individual transac-

tion entries cannot be modeled as a data cube directly, a data cube can be

constructed from the transactional data by aggregating measures such as

“amount paid” and “number of items purchased” along dimensions such as

“time”, “region” and “product category”. This is a typical data warehouse

scenario, where a business aggregates transactional data into a data cube in

order to analyze company activities in a summary view.

The key characteristics that allow a given data set to be modeled as a
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data cube are as follows:

• The data set contains numeric fields (termed “measures”) that repre-

sent aggregated summaries using sum, average, or some other aggrega-

tion operator.

• The measures of the data set are aggregated along one or more sets of

discrete categories or entities (termed “dimensions”). These dimensions

can be either unordered, ordered, or hierarchical.

Data sets that have the following qualities may not be modeled as a data

cube (although it may be possible to compute data cubes that summarize

data sets like these):

• The data set represents a graph. Graph data such as social network

connections or links between Web pages is not supported by the data

cube model.

• The data set contains relational data with a one-to-many relation. For

example, a database of transactions in a grocery store where one trans-

action has many items. Items containing lists of other items cannot

be represented using the data cube model. However, one may consider

transforming data sets like this such that the nested lists are summa-

rized by some measures (such as total cost or number of items) so the

data cube model can be applied.
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• The data set contains entries for individual discrete events or transac-

tions. Data sets with this quality cannot be modeled directly as data

cubes, however it may be possible to compute data cubes by aggregat-

ing them using OLAP techniques from data warehousing.

Public data tends to be particularly well suited to the data cube model

because it typically contains measures about people (or byproducts of hu-

man activities) distributed across time, space (geographic regions) and other

dimensions such as gender or age range. For example, the public data avail-

able in the Gapminder visualization tool contains measures (such as “number

of adults with HIV/AIDS” and “child mortality”) aggregated across coun-

tries and years [45]. This partitioning of space into countries and time into

years is one choice of levels in the space and time hierarchies, but the data

cube model is more general in that it can support multiple levels of detail in

both the Space dimension (e.g. Continents, Countries, States, Counties, and

Metropolitan Areas) and the Time dimension (e.g. millenia, centuries, years,

months, days, hours and minutes). Therefore any public data sets that con-

tain measures (also called statistics, indicators or metrics) aggregated along

any resolution of time and space can be modeled as data cubes.

When multiple data sets are modeled as data cubes, they can be in-

tegrated into a single structure. Based on the common dimensions and

measures shared between data sets, an integrated heterogeneous data cube

structure can be created from an arbitrary number of data sets from multiple

sources. Interactive visualization techniques can be applied to this integrated
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structure, yielding fundamentally new ways of exploring and presenting mul-

tiple data sets.
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2 Expected Contributions

The expected contributions of this dissertation include the following:

• Novel data structures and algorithms for data cube integration. Exist-

ing formats, protocols and models only consider the case of homoge-

neous data cubes computed from a single source of relational data, and

do not handle the case of integrating many pre-computed data cubes

from multiple sources. Data integration has been well studied for re-

lational data, but data integration methods have not been applied to

OLAP cubes, which present unique challenges including management

of dimension hierarchies and measures that are “universal”, or shared

by many data sources.

• A conceptual framework that links the integrated data cube structure

with existing data visualization theory and techniques. Much work has

been done concerning “Visual OLAP” [82], however the visualization

approaches for OLAP cubes have not been extended to handle the rich

heterogeneous structure introduced by integrating many data cubes

from multiple sources.

• A framework for defining visualization dashboards with multiple linked

views for interactively exploring integrated data cubes. Interactions be-

tween multiple views for OLAP cubes have been considered, but our

proposed integrated data cube structure affords a richer set of interac-
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tions that goes beyond traditional OLAP operations such as drill-down,

roll-up, slice and dice.

These contributions will advance the field of computing and data visual-

ization by enabling the development of tools for integrating and visualizing

heterogeneous data sets in ways never before possible.
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3 Related Work

3.1 Data Representation

In today’s world of “information overload”, data takes many forms. Perhaps

the most familiar data representation system today is Microsoft Excel, which

is capable of representing data tables as well as complex operations across

the data values [38]. Many organizations use Excel to manage data or make

data available as Excel spreadsheets. For example, the United Nations De-

partment of Economic and Social Affairs makes their population statistics

available in Excel format (see figure 6).

Figure 6: The United Nations Population Prospects data set [86], made
available in Excel format. This is another example of a public data set that
could be imported into our data representation framework.
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Relational database systems provide a mature data management solution

and are widely adopted [94]. The relational model has well understood the-

oretical underpinnings such as the relational algebra [23]. Data warehouse

systems are typically built on the relational model, and augmented by multi-

scale aggregated data structures called data cubes, also known as OLAP (On-

Line Analytical Processing) cubes [47] [24]. Data cubes contain summaries

of the collection of facts stored in a relational database [19]. For example,

a data cube may contain how much profit was made from month to month

subdivided by product category, while the relational database may contain

the information associated with each individual transaction. Because data

cubes provide a higher level of abstraction, they are a widely used method

of data abstraction for supporting visualization and analysis tasks. Kimball

pioneered the area of “Dimensional Modeling”, which concerns construct-

ing data warehouse schemas amenable to OLAP based analysis [63]. Data

cubes have been implemented in a variety of different systems, so effort has

been made to discover unified conceptual or mathematical models that can

characterize many implementations [32] [116] [115] [70] [3] [49] [13].

NoSQL systems are modern databases that are designed to go beyond

the scalability limitations of relational systems [18]. While NoSQL systems

sacrifice some of the integrity constraints upheld by relational database sys-

tems [109], they are gaining traction in industry because they can handle the

scale of data demanded by applications of the “Big Data” era [67]. NoSQL

systems provide flexible storage systems that do not necessarily require the
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definition of a schema. This makes it arguably easier to modify and update

the type of content stored over time as compared to relational systems.

The Semantic Web is a vision of a “Web of Data” coexisting with the

World Wide Web [8]. The basis of the Semantic Web is the RDF (Resource

Description Framework) data model, which represents a graph of data in

the form of (subject, predicate, object) triples. The Semantic Web vision

has evolved into the concept of Linked Data, which refers to data that is

available as RDF and made available according to common conventions [12]

[10]. Any data that can be represented using a relational database can also

be represented using RDF [11]. The SPARQL query language for RDF can

be used to query and integrate data from multiple sources [92]. Lopez et al.

developed an information management system for integrating and analyzing

heterogeneous information sources characterizing urban areas [73]. The Se-

mantic Web technology stack contains a method for declaring when different

identifiers refer to the same entity and processing queries appropriately to in-

tegrate data [51] [33]. While the Semantic Web provides a compelling vision,

its adoption is not as widespread as one might expect [74].

The RDF Data Cube Vocabulary is capable of representing data cubes

using Semantic Web technologies [30]. The intention of the RDF Data Cube

Vocabulary is to provide a common representation and interchange format

for statistical data. The RDF Data Cube Vocabulary draws from a previous

effort called the Statistical Data and Metadata eXchange (SDMX) initiative

that was launched in 2001 by seven organizations working on statistics at the
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international level [29]. The primary challenges faced when using the RDF

Data Cube Vocabulary include transforming to and from well known formats

and data models. Salas et al. discussed how data can be transformed from

existing OLAP systems or flat files into RDF using the Data Cube Vocab-

ulary, and also introduced a faceted visualization tool for RDF data cubes

[97]. Kämpgen et al. investigated how data represented using the RDF Data

Cube Vocabulary can be transformed for analysis using traditional OLAP

systems [60]. Maali et al. proposed a pipeline for converting government

data into high quality Linked Data utilizing the Data Cube Vocabulary [75].

Datta et al. introduce a conceptual model for data cubes [32]. In this

formalization, a data cube (or, in the terms of the authors, a data cube

instance) is defined as a 6-tuple (D,M,A, f, V, g) where D is a set of dimen-

sions, M is a set of measures, A is a set of attributes, f is a function that

maps dimensions to sets of attributes (the levels of the dimension), V is a

set of tuples that assign concrete numeric values for each measure, and g is

a function that maps data cube cells to tuples in V . The authors formalize

common OLAP operators including slice, drill-down, roll-up, and pivot, as

well as operators over multiple cubes including join, union, intersection and

difference. This formalism captures the essence of data cubes, but is limited

in that it does not deal with integrating data cubes from multiple sources

where names used for dimensions, attributes and measures may not match.

Kuznetsov et al. introduce a mathematical formalism of data cubes based

on lattice theory [66]. This work focuses primarily on characterizing the
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lattice structure of hierarchical data cubes and relating the structure to es-

tablished mathematics in lattice theory. The contribution of this work is

primarily mathematical, and the structures introduced do not cover the en-

tire problem area of representing, structuring and querying complete data

cubes. This characterization is similar to the zoom graph concept intro-

duced by stolte et al. [108]. Usman et al. introduced a conceptual model for

OLAP enhanced for coupling with data mining and visualization techniques

[114].

3.2 Data Integration

The field of data integration offers many techniques for combining data from

multiple sources based on the relational model [36] as well as from a the-

oretical perspective [69] [50] [124]. Schema matching is the area of data

integration that concerns semantic matching between the attributes of data

tables from different sources [93] [41]. Schema matching may be performed

manually, however it must be automated in order to scale to hundreds or

thousands of different sources. Numerous approaches for automated schema

matching have been proposed [104] [34] [62] [84] [77] [35]. Schema matching

approaches aimed specifically at Web and Ontology based data integration

have also been proposed [54] [87] [37] [78] [59] [88] [113] [118] [89] [40]. Data

matching (also known as record linkage) is the area of data integration focus-

ing on resolving different identifiers to the same real-world entity [121] [122]

[65] [4] [48]. Record linkage has been applied extensively to public data [58]
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[57] [56]. Several tools have been introduced that aid users in data integra-

tion tasks via a graphical user interface [22] [61] [39]. Techniques from both

of these areas must be applied in order to integrate data sets from multiple

sources and utilize our proposed unified data model.

3.3 Visualization

The field of information visualization offers several compelling theoretical ap-

proaches for visualizing data. Arguably the first significant work concerning

data visualization was William Playfair’s “Commercial and Political Atlas”,

published in 1786 [91]. In this work, Playfair introduced the Bar Chart,

Pie Chart, and Line Graph. The first attempt at a systematic formalization

of data visualization was Jacques Bertin’s “Semiology of Graphics” [9]. In

this work, Bertin relates data types to visual marks and channels in a co-

herent system that takes visual perception into account. Bertin’s work has

influenced many future theoretical underpinnings of visualization, includ-

ing Leland Wilkinson’s “Grammar of Graphics” [120] and Jock Mackinlay’s

APT (A Presentation Tool) system [76], which led to the development of the

commercial visualization package Tableau [52].

As a more concrete manifestation of visualization theory, much effort

has been placed on generating taxonomies of visualization techniques. Chi

et al. introduced a concrete taxonomy of visualizations [20] based on the

Data State Reference Model [21]. Shneiderman introduced a more general

taxonomy based on tasks and data types [103]. Card et al. made steps
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toward characterizing the entire design space of data visualizations based

on Bertin’s theory [16]. Tufte explored numerous visualization techniques

for quantitative information in general, many of which can be applied to

visualization of data cubes [112].

Much work has been done regarding visualization of data cubes. Stolte

et al. introduced a formalism for defining multi-scale visualizations of data

cubes throughout their work on the Polaris system [108] [107] [106]. In this

work the authors introduce theoretical underpinnings of a visualization sys-

tem capable of navigating hierarchical data cubes with a combination of

data abstraction and visual abstraction. One fundamental concept in this

system is the “zoom graph”, a lattice of data cubes that supports arbitrary

interactive zoom paths through the multidimensional data cube hierarchies.

Cuzzocrea et al. surveyed the area of data cube visualization in depth [26]

and have made several contributions regarding semantics-aware OLAP visu-

alization [28] and a hierarchy driven compression technique for OLAP visu-

alization [27]. Mansmann coined the term “Visual OLAP”, framed it as a

fundamentally new paradigm for exploring multidimensional aggregates [82],

explored applications of hierarchical visualization techniques to OLAP cubes

[81] and extended Visual OLAP to support irregular hierarchies [80]. Scotch

et al. developed and evaluated SOVAT, a Spatial OLAP visualization and

analysis tool applied to community health assessments [100] [99]. Lee and

Ong introduced a visualisation technique for knowledge discovery in OLAP

combining elements of bar charts and parallel coordinates [68]. Maniatis et
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al. explored how OLAP cubes can be visualized using TableLens and other

techniques [79]. Data cubes have also been utilized as the foundational data

structure for several “Big Data” visualization systems [71] [72].

Interactions within data visualization environments have been well stud-

ied. Becker et al. investigated brushing in scatter plots [7]. Shneiderman

et al. explored dynamic queries in general and how these operations fit into

a larger context of visual information seeking [102]. Ward introduced a vi-

sualization system based on multiple linked views with direct manipulation

techniques including brushing and linking [119]. Anselin discussed how inter-

active visualization systems with linked views can be applied to Geographic

Information Systems [5]. Yi et al. conducted a thorough survey of existing

taxonomies for visualization and interactions and developed a set of gen-

eralized classes of interactions for visualization [123]. Techapichetvanich et

al. explored how visualization interactions pertain to OLAP cubes in par-

ticular [110]. Sifer et al. introduced a visual interface utilizing coordinated

dimension hierarchies for OLAP cubes [105]. Tegarden formulates some re-

quirements for information visualization relevant for business applications,

and highlights some unconventional interactive visualizations with potential

application to data cube visualization [111].

3.4 Web Graphics Technology

The World Wide Web has evolved to become a full fledged application de-

velopment platform. HTML5 is the latest set of standards and APIs (Ap-
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plication Programming Interfaces) from the World Wide Web Consortium

that define the capabilities of modern Web browsers [55]. HTML5 applica-

tions are able to run across multiple platforms (albeit requiring some effort

from developers). HTML5 has eclipsed Java Applets and Flash in fulfilling

the dream of “write once, run anywhere”. HTML5 contains three graphics

technologies that can support interactive Web-based visualizations: Canvas,

SVG (Scalable Vector Graphics), and WebGL.

HTML5 Canvas provides a 2D immediate mode graphics API [44]. When

using the Canvas API, developers must work with a stateful graphics con-

text by issuing commands to manipulate the raster image of a Canvas ele-

ment within the HTML page. This approach requires developers to manage

rendering logic at a low level and manage data structures that correspond

to graphical representations. The Canvas API has seen wide adoption for

HTML5-based games, however for visualization applications the higher level

SVG API has seen wider adoption.

SVG (Scalable Vector Graphics) provides a 2D retained mode Graphics

API [31]. SVG uses the HTML DOM (Document Object Model) to represent

the definition of persistent graphical elements. When using SVG, developers

need only be concerned with updating the DOM. The SVG engine within

the browser is responsible for updating the display to correspond with the

SVG DOM. In this way, SVG is a higher level API than Canvas. This

makes SVG a preferred platform for developing visualizations. However,

SVG is less optimizable than Canvas, because developers do not have access
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to the rendering logic at all. SVG has performance limitations relating to

performance limitations and DOM manipulation overhead.

WebGL provides a 3D graphics API that is essentially an interface to

OpenGL ES [83]. OpenGL ES is a subset of OpenGL designed for use

in embedded systems and mobile devices. Developers using WebGL must

use programming techniques inherited from OpenGL such as buffer man-

agement, vertex management, shader definition, 3D projection, and light-

ing techniques. WebGL enables developers to take advantage of the GPU

(Graphics Processing Unit) for massively parallel computation using shaders.

WebGL supports high performance 2D and 3D graphics, but is much more

complicated to use than Canvas or SVG.

Many high level libraries have been built for supporting use of Canvas,

SVG, and WebGL. Three.js is a 3D scene graph library that includes ren-

dering engines for all three graphics technologies [15]. Highcharts is a high

level visualization library that provides pre-packaged chart types that can

be customized to a limited extent. Leaflet is a library for creating tile-based

geographic maps with zooming and panning. hBrowse is a generic frame-

work introduced for Web-based hierarchy visualization [64]. Processing.js is

a JavaScript port of the graphics language Processing using HTML5 Canvas.

Many more libraries for Web-based graphics and visualization exist, but none

have come close to the widespread adoption of D3.js.

D3.js is a flexible and powerful visualization library that uses SVG and

has a strong community of users [14]. D3 at its core is a DOM manipula-
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tion library with heavy use of functional programming. D3 allows concise

declarative statements to define the core logic of visualizations. D3 provides

additional APIs for performing common visualization tasks such as defining

and using scales, generating labeled axes, and computing layouts from graphs

and trees. D3 is at the center of a vibrant developer ecosystem and has seen

wide adoption in industry. There are plentiful examples of D3.js usage for

creating visualizations, some of which are shown in figure 7. Many support-

ing libraries have been created including NVD3 reusable charts, Chart.js for

composing visualization elements, Crossfilter.js for interactive multidimen-

sional filtering, and DC.js for multiple linked views.

Several projects have focused explicitly on visualization of public data

on the Web. ManyEyes was an experiment in scaling the audience for vi-

sualizations by empowering users to create visualizations of their own data

[117]. ManyEyes provided a fixed set of pre-packaged visualization tools and

allowed users to visualize their own data tables using the provided visualiza-

tions. GapMinder is a project aimed at exposing public data (primarily the

United Nations Millenium Development Goals Indicators) using visualization

[96]. GapMinder includes an animated scatter plot with an interactive time

slider, a line chart showing statistics over time, and a world map (see figure

8). The Google Public Data Explorer provides a visual interface to selected

public data sets similar to GapMinder, however it does not make the data

available to users in a machine-readable format.
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Figure 7: Basic chart examples using D3.js. These are some examples of
visualizations that can be tailored to visualize and interact with data cube
projections in a generalized manner, building on our proposed framework.

4 Vision

In order to motivate research in data cube integration and visualization,

one must consider a larger picture. The public data available today can

paint a vivid picture of the world if it is exposed in a meaningful way. Data

visualization augments human cognition by enabling users to glean knowledge

from data using visual perception rather than detailed mental analysis [17].

Data cubes provide a well structured common representation that captures

the essence of many data sets. Data visualization augments human cognition
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Figure 8: Gapminder, a public data visualization tool based on an animated
scatter plot, timeline, and map. Here, Professor Hans Rosling, the creator of
GapMinder, is shown gesturing the motion of the plot while presenting the
visualization.

by offloading data analysis tasks to tasks of visual perception. The synthesis

of public data with visualization through data cubes can lead to a technology

platform that changes the world by bringing the power of data visualization

to the public.

The main problem this work addresses is the gap between heterogeneous

data sets and information visualization software. The reality of the current
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data visualization landscape contains many disparate data sets, data for-

mats, visualization tools (specific implementations), and visualization tech-

niques (abstract conceptual visualization approaches). The problem with

this situation is that it requires an immense amount of manual work to es-

tablish a complete pipeline from any given data source to an instantiation of

a visualization technique. This situation is summarized in figure 9.

Figure 9: The fragmented reality of public data visualization. This is the
primary problem addressed by this work.

An ideal solution to this problem would allow any target data set to be

visualized using any target visualization technique. For example, the task

“Visualize the US Census Population Statistics on a Choropleth Map” should

be possible to execute in a straightforward way, ideally by a simple process in

which the target data set is selected (US Census Population Statistics), the

target visualization technique is selected (Choropleth Map), and the map-

ping from the data set to the visualization technique is configured (total

population maps to region area color by a linear color ramp). This ideal is
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summarized in figure 10.

Figure 10: The ideal solution to the gulf between data sets and visualizations.

Our proposed solution to address the gulf between data sets and visualiza-

tion techniques involves the introduction of a generic data representation and

a visualization pipeline based on it. The generic data representation should

be capable of representing most public data sets. For this we chose to use the

data cube concept as a foundation, as it captures the essential structure of

most public data sets we considered. Additional metadata not captured by

traditional OLAP systems is also required for generating satisfactory visual-

izations, such as provenance information and human-readable descriptions of

the dimensions and measures involved. This solution is summarized in figure

11.

4.1 Application Areas

Imagine what it would be like if any person could readily access or construct

interactive visualizations of public data. Public data and its visualization has
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Figure 11: Our proposed solution; introduce generic intermediate represen-
tations conducive to data visualization.

relevance to many application areas including but not limited to education,

journalism, and public policy.

Educational material is ripe with opportunity for augmentation by inter-

active visualizations. For example, consider the next generation of textbooks

as eBooks running on tablets. Textbooks covering historical trends can use

visualization to represent data about, for example, the distribution of vari-

ous demographics across Earth and how they have shifted over the centuries.

Economics courses could use interactive visualizations of global economic

data to help students better understand economic dynamics. Environmental

studies can include visualizations of public data on climate and pollution.

Medical studies can take advantage of public health data. There is no end

to the potential applications of public data visualization in education.

Journalism requires an in-depth understanding of stories as they evolve.

Public data can provide context for those stories, and interactive visualiza-

31



tions of relevant data can be placed in digital publications alongside article

text. Visualizations are already being used for this purpose today by pub-

lishers such as the New York Times and the Boston Globe.

In the area of public policy, people need to make decisions that are com-

plex and can benefit from data analysis insights. However, public policy

teams often lack the specialized skill set required to analyze available public

data relevant to the decisions at hand. If tools were available that made it

easy for anyone to visualize public data, policy makers could utilize such tools

to great effect during the policy making process. Discussions could be aug-

mented by explorations of public data, and policy decisions could be backed

by visual data presentations that clearly and objectively make a point.

4.2 Data

Consider public data sources such as the United Nations, the US Census,

the US Bureau of Labor Statistics, and the US Centers for Disease Control.

These organizations and hundreds of others around the world are providing

publicly available data about various topics including population statistics,

public health, distribution of wealth, quality of life, economics, the environ-

ment, and many others. These data sets can be exposed to the general public

using interactive visualization.

Most data sources provide essentially data tables. While these data tables

can be mapped to visualizations, the potential for automating the visualiza-

tion generation process is limited because essential metadata is missing from
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the table representation. For example, each column in the table may have a

name, but the meaning of each column may only exist within documentation

for the table, which requires manual effort to track down and integrate into

the visualization. Also, with tables it is up to the visualization author to dis-

tinguish nominal (dimension) columns from quantitative (measure) columns

and choose visual encodings appropriate for each. The data cube model

The proposed data cube based data model is superior to simple data ta-

bles for several reasons. By modeling each data set as a data cube using

the proposed model, the essential metadata required for automatic visual-

ization generation is present in the data. For example, each dimension and

measure of the data cube is explicit in the data representation, eliminating

the need for a human to refer to external documentation as part of the vi-

sualization process. The proposed data model also explicitly represents four

kinds of data relevant to visualization theory. Dimensions can be ordinal,

nominal or hierarchical. Measures are quantitative. Visualization theory

for ordinal, nominal and quantitative fields has been developed by Bertin

[9], while visualization of hierarchical data has been explored subsequently

in the literature [6]. The explicit representation of these factors within the

data model enables partial automation of visualization creation by providing

visual encoding options to users based directly on visualization theory.

In addition to supporting static visualizations, our proposed data model

supports interactions within and between visualizations. While tables pro-

vide minimal guidance for visualization authors in terms of possible interac-
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tions, elements of the data cube model correspond directly to visualization

interactions. Measures are quantitative fields that can be used for brushing

with interactive filters (for example, with rectangular selection in a scatter

plot). Dimensions can be visually selected, then used for defining the slice

shown in a linked visualization (for example, selecting bars in a bar chart

can drive the data shown in a choropleth map). Hierarchies afford tree-based

interactions such as drill-down and roll-up, which can also be used for linking

visualizations. For the hierarchical dimensions of space (geographic regions)

and time, pan and zoom interactions can define dimension slices.

The proposed work includes a survey of prominent public data sources.

This survey will include a listing of data providers, their data access mech-

anisms, and data cube models of the data sets they provide. This survey of

data sets will inform the development of novel data structures and algorithms

capable of integrating and querying data sets from multiple sources based on

the data cube model. Several data sets surveyed will be transformed into the

novel data structure and integrated together as proof-of-concept examples.

4.3 Visualizations

There are many established data visualization techniques such as bar charts,

scatter plots, and choropleth maps. Many of these techniques can be under-

stood in terms of the data cube structure they are capable of representing.

For example, a simple bar chart is capable of representing a single dimen-

sion (defining the meaning of each bar), and a single measure (defining the
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height of each bar). As another example, a simple scatter plot is capable of

representing a single dimension (defining the meaning of each dot), and two

measures (one for the X position and one for the Y position).

The proposed work includes a survey of established visualization tech-

niques. This survey will include a listing of well known data visualization

techniques and a characterization of the data cube structure they are capa-

ble of representing. For several of these visualization techniques, concrete

algorithms will be developed that implement the visualization in a generic

manner, building on the novel data structures and algorithms introduced for

data cube integration.

4.4 User Tasks

End users of the system should be able to visually explore and present data

for their own purposes. The data visualization process involves many steps

such as importing the raw data set into the framework, identifying common

dimensions and measures between data sets (schema matching), identifying

when different identifiers refer to the same entity (data matching), choosing

which data sets to use as input, identifying a subset (data cube projection)

to use as input to a visualization, choosing which visualization technique

to apply, and defining a mapping between the data cube structure and the

visualization.

The proposed work includes demonstration of a complete data visualiza-

tion workflow based on the data representation and visualization framework
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introduced. For each step in the process, it is possible to develop a user

interface. However, developing a user interface for every step is beyond the

scope of this dissertation. Importing data sets into the framework will require

programming effort. User interface approaches will be introduced for data

visualization steps that use data sets already imported into the framework,

such as data set selection, querying, and visualization mapping.
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5 Data Cube Representation and Integration

The core contributions of this dissertation are novel data structures and al-

gorithms for data cube integration and visualization. In this section these

contributions are formalized. Representation and transformation of multi-

ple data cubes lies at the heart of this project. Therefore a data structure

capable of representing multiple data cubes is introduced. Algorithms are

introduced for integration of multiple data cubes and for querying the inte-

grated structure for the purpose of interactive visualization.

5.1 Core Data Structures

In the literature on data cubes, terminology is not always consistent. For

example, Datta et al. use the term “attribute” to refer to dimension hierarchy

levels [32], while the RDF Data Cube Vocabulary uses the term “attribute”

to refer to annotations on observations that may relate to scaling factors or

the status of the observation [30]. Let us begin our formalization of data

cubes with a discussion of the terms that will be used: data set, dimension,

level, member, cell, measure and observation.

The conceptual model of our proposed framework is shown in figure 12.

In this figure, Crow’s Foot notation [53] is used to represent the concepts

and their relationships. When two concepts are connected with a line that

branches into three lines at one end (the “crow’s foot”), it means that there

is a one-to-many relationship between those concepts. To be precise, the
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concept that the crow’s foot points at has a cardinality constraint “one or

more” with respect to the concept connected with the single line end. A

perpendicular line to the crow’s foot represents optionality (whether the re-

lationship is mandatory or optional). When the perpendicular line is present,

it means it is mandatory (not optional) that there be exactly one instance

of the concept connected with the single line end present. For example, in

the connection between DataSource and DataSet, the crow’s foot means “A

DataSet has many Observations”, and the perpendicular line means “Every

Observation is associated with exactly one DataSet”.

Figure 12: The preliminary conceptual model of our proposed unified data
representation framework.

The term “data set” will be used to refer to a collection of observations
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from the same source where each observation shares a common set of dimen-

sions and measures. A data set can be annotated with metadata such as the

title of the data set, its source, and a human readable text description. This

is similar to the term DataSet in the RDF Data Cube Vocabulary [30]. One

example data set would be “United Nations Population Estimates”, which

contains population values at the country level since 1950.

The term “dimension” will be used to refer to a set of entities that may be

arranged in a hierarchy. The entities within a dimension hierarchy are called

“members” of the dimension. Members may fall into a particular “level”, or

depth of the hierarchy. One example dimension would be “Time”, having

levels “Year”, “Month”, and “Day”. Members of the Time dimension at the

Year level might include “1950”, “1951”, and so on. Space and Time are

dimensions that occur in most data sets. Additional dimension examples

include “Gender”, “Ethnicity”, “Age range”, and “Industry”.

The term “cell” will be used to refer to a set of members. Each member in

a cell comes from a distinct dimension. Data sets typically include multiple

dimensions. For example, the UN Population Estimates data set includes

both the Space and Time dimensions. In this data set, population values

are assigned to combinations of Space and Time. A specific combination of

members, one from Space and one from Time, defines a cell in this data set.

One example of a cell would be “France in 1950”. The number of members

defining a cell must correspond to the dimensions of the data set within which

the cell is used. If the data set covers, for example, Space, Time and Gender,
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an example of a cell would be “Females in France in 1950”.

The term “measure” will be used to refer to the properties for which

numeric values can be assigned to cells. Measures almost always represent a

count, sum or average over the abstract space defined by cells. For example,

“Population” is a measure (the count of people). Other example measures

include “Average income”, “Number of people with AIDS”, “Child Mortality

Rate”, “Gross Domestic Product”, “Area”, and “Population Density”.

Some instances of these terms are universal (can be referenced by many

data sets) while some are local (exist only within a data set). Dimensions,

levels, members and measures are universal. Instances of these may be refer-

enced in many data sets. Observations are local to particular data sets. This

distinction of universal versus local scope is necessary when considering the

challenge of integrating many data sets together, because the reconciliation

of entities across independently published data sets is critical for data set

integration.

Let us define universal data cube metadata as a tuple (D,L,E, l, e, p,M)

where

• D is a set of dimensions.

• L is a set of levels.

• E is a set of members.

• l : E → L is a one-to-one mapping that assigns a level to a member.

Although in practice it may not make sense to assign levels to all mem-
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bers (for example, consider the “Gender” dimension), let us make the

simplifying assumption that every member has a level.

• e : D → E is a one-to-many mapping that defines the set of members

that fall within a given dimension. Every member should only fall

within a single dimension.

• p : E → E is a one-to-one mapping that defines the parent-child rela-

tionship between members. For a given member m, p(m) is its parent

member in the dimension hierarchy.

• M is a set of measures.

Let us define a data set S as a tuple (DS, LS, ES,MS, C, V, g) where

• DS = {d1, d2, . . . , dn} is the set of n dimensions present in the data set.

• LS is the set of levels present in the data set.

• ES is the set of members present in the data set.

• MS = {m1,m2, . . . ,mk} is the set of k measures present in the data

set.

• C is the set of cells in the data set, defined by the cartesian product of

member sets for each dimension as follows: C = e(d1) × e(d2) × . . . ×

e(dn) where e(d) represents the set of members in ES that fall within

dimension d.
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• V is the set of values corresponding to observations in the data set.

Each value v ∈ V is a tuple (u1, u2, . . . , uk) where each ui is a numeric

value corresponding to the measure mi ∈MS.

The proposed work involves extending this mathematical formalism of

our unified data representation framework to support all operations neces-

sary for visualization of data. More specifically, the operations introduced

in the OLAP model and algebra from Datta et. al [32] including restriction

(slicing), aggregation (roll-up), join, and union will be considered for exten-

sion into our model. The extension will involve handling multiple data cubes

simultaneously, and dealing with the heterogeneous data cube structures that

result when querying across multiple cubes.

5.2 Integrating Multiple Data Cubes

The data structure introduced separates the universal structural elements

from the values specific to each data set. This means that when importing a

data set into this data structure, a mapping between dimension and measure

identifiers found in the raw data set and universal dimension and measure

definitions must be established. When a data set is imported that includes

dimensions or measures not found in any other data set already imported,

universal dimensions and measures must be created from the data set. When

a data set is imported that includes dimensions and measures shared between

it and previously imported data sets, a mapping between the identifiers in
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the data set being imported and the existing universal definitions must be

established. The process of establishing such mappings can draw from well

known data integration processes of schema matching and data matching.

This approach implies that the data integration tasks of schema matching

and data matching must take place before any data set is imported into the

data structure. In other words, it is not possible for the data structure to

contain multiple data sets for which matching has not already been done,

unless duplicate universal dimensions or measures have been inadvertently

created.

When querying the integrated data cube structure, heterogeneities may

arise that would not occur in conventional OLAP systems. For example,

two data sets may provide different values for the same measure in the same

cell for dimension subsets in which they overlap. In processing query results

for visualization, one approach that can be taken is to take the average of

the values. This would mean that for areas in which the data sets do not

overlap, values would be taken only from the single data set that provides the

value, where in overlapping areas the average value from each data set will be

provided. This gives the user the impression of a single uniform larger data

set. The overlapping areas may also reveal discrepancies between data sets

(by analyzing the differences in value), but this is an area of future research

beyond the scope of this dissertation.
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5.3 Crowdsourcing Data Experiment

Rather than manually curating data, a crowdsourcing approach can be taken

to data collection for the UDC. We have performed an initial experiment

to test the feasibility of this approach. Amazon Mechanical Turk supports

assignment of tasks, called “Human Intelligence Tasks” or HITs, to workers

who get paid small amounts (on the order of cents) to execute the tasks.

To populate the UDC using Mechanical Turk, HITs can be devised that ask

workers to find an answer to a simple question like “What was the population

of India in 1950?”. This question is an instance of a more general form “What

was the ${measure} of ${place} in ${time}”. By enumerating possible

values for ${measure}, ${place}, and ${time}, responses to such HITs can

populate large regions of the UDC.

To test the crowdsourcing data collection approach, an experiment was

performed using Amazon Mechanical Turk. In this experiment, ${measure}

= population, ${place} = {India, China, United States}, and ${time} =

{1950, 2010}. The results contained between 7 and 10 responses from mul-

tiple workers for each combination of place and time. By taking the mode

(most frequently occurring value) of the worker submissions for each combi-

nation of place and time, the following table was generated:

In the table shown in figure 13, each row represents an observation within

the data cube. The values in the Place column refer to members of the Space

dimension. The values in the Time column refer to members of the Time

dimension. The values in the Population column assign numeric values to
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Place Time Population Source URL
India 1950 369880000 www.geohive.com/earth/population3.aspx

China 1950 563000000 geography.about.com/od/populationgeography/a/chinapopulation.htm

USA 1950 150697361 en.wikipedia.org/wiki/1950_United_States_Census

India 2010 1150000000 www.indiaonlinepages.com/population/india-population.html

China 2010 1339724852 en.wikipedia.org/wiki/Demographics_of_China

USA 2010 308745538 en.wikipedia.org/wiki/United_States_Census

Figure 13: Initial results from an experiment in crowdsourcing public data
using Amazon Mechanical Turk.

cells (combinations of Space and Time members) for the Population measure.

This initial result demonstrates the feasibility of crowdsourced data collection

for the UDC.

45



6 Data Cube Visualization

The purpose of introducing novel data structures and algorithms for data

cube integration is to provide a foundation for development of interactive

data visualization software. Data visualization theory (the relationships be-

tween data, graphics and perception) has been explored by Bertin [9], Wilkin-

son [120], Mackinlay [76] and others. Visualization of homogeneous data

cubes has also been explored by Stolte et al. [108], Cuzzocrea et al. [26], and

others. In the sections that follow, the possibilities for interactive visualiza-

tions based on the novel data cube integration framework are explored.

6.1 Data Cubes and Visualization Theory

Data cubes map well to data visualization. Bertin developed a significant

part of his visualization theory based on data tables and the various kinds

of fields (also referred to as attributes or columns) that one may encounter

[9]. Dimensions and measures of data cubes, when projected into a table

via querying, produce fields that correspond to the types of fields identified

by Bertin. Based on an understanding of this correspondence, visualizations

can be understood in terms of the data cube structures they are capable of

representing.

The kinds of data table fields identified by Bertin include Nominal, Or-

dered, and Quantitative. Nominal fields contain references to distinct cat-

egories that have no intrinsic ordering. For example, a column in a table
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referring to World Countries may be considered Nominal. Ordered fields

contain references to distinct categories that have an intrinsic ordering. For

example a field contain the values ”Small”, ”Medium”, and ”Large” may

be considered Ordered. Quantitative fields contain numeric values. For ex-

ample, a field containing the population of each country may be considered

Quantitative. Note that any Quantitative field may be converted into an

Ordered field by binning.

According to Bertin, the appropriate visual encoding of a given field in a

data table is determined by whether it is Nominal, Ordered or Quantitative

(from Semiology of Graphics [9] p. 69). The planar X and Y dimensions

are the most powerful in that they are capable of representing any kind of

field. Size is also capable of representing any kind of field. Value (also called

luminance or brightness) is capable of precisely representing only Nominal

and Ordered fields. Texture (variation in the pattern used to fill visual marks)

is capable of representing Nominal or Ordered fields. Color, Orientation and

Shape are only capable of representing Nominal fields.

Visualization of trees is considered in another part of Bertin’s theory (as a

subset of networks) and has been explored in depth in visualization literature

[46] [101] [98] [6]. The primary means of tree visualization include node-

link diagrams, nested shapes, adjacent shapes, indented lists, and matrix

representations. Node-link diagrams of trees have separate marks for each

node, and each node is connected by a line. Nested shape tree visualizations

such as TreeMaps or nested circles use containment to represent the tree
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structure. Tree visualizations using adjacent shapes such as icicle plots or

tree rings (hierarchical pie charts) use adjacency to represent connections

between nodes in the tree. Indented lists, as in a file system tree view or a

table of contents outline, use indentation level and linear ordering to present

the tree. Matrix representations from graph theory can also be used to

represent trees, however this is not common.

Data cube projections produce tables whose field types derive directly

from the dimensions and measures involved. Data cube dimensions may be

hierarchical, ordered, or unordered. These dimensions, when projected into

tables, yield trees, Ordered fields, and Nominal fields, respectively. Data cube

measures always project to Quantitative fields. Using these correspondences

between data cubes and data types linked with visualization methods, a

taxonomy of data cube visualizations can be formulated.

Based on an understanding of how data cube projections can map to

visual encodings, visualization techniques can be characterized in terms of

the data cube structure they are capable of representing. The relationship

between data cube structures and visual encodings provides the basis upon

which generalized visualization tools can be developed. These generalized

visualization tools can then be used to visualize any data cube projection

that adheres to the limitations of the input data cube structure they are

capable of representing. Examples of such reusable visualizations include

bar chart, grouped bar chart, stacked bar chart, area plot, streamgraph,

scatter plot, parallel coordinates, choropleth map, treemap, radial tree, and
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icicle plot.

The proposed work involves precise characterization of the above men-

tioned visualizations in terms of the data cube structure they are capable of

representing. This categorization provides the basis upon which interactions

on the visualizations can be formulated.

6.2 Visualization Taxonomy

Visualization Technique Data Cube Structure
Bar Chart 1D, 1M
Pie Chart 1D, 1M
Scatter Plot 1D, 2M
Stacked Area Chart 2D, 1M
Line Chart 2D, 1M
Choropleth Map 1D (Geo), 1M
Node-Link Tree 1D (Hierarchical), 0M
TreeMap 1D (Hierarchical), 1M
Circular TreeMap 1D (Hierarchical), 1M
Icicle Plot 1D (Hierarchical), 1M
Hierarchical Pie Chart 1D (Hierarchical), 1M
Parallel Coordinates 1D, nM
Pivot Table nD, nM
Small Multiples +1D or +2D

Figure 14: Our taxonomy of visualization techniques based on the data cube
structures they are capable of representing.

We introduce a taxonomy of visualization techniques based on the data

cube structures they are capable of representing, as shown in the table in

figure 14. In the “Data Cube Structure” column, “D” stands for Dimension

and “M” stands for Measure. The number preceding “D” or “M” is the
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number of Dimensions or Measures that the visualization technique is capable

of representing. When “n” is used instead of a number, it means an arbitrary

number of Dimensions or Measures can be represented by the visualization.

“Small Multiples” is considered here as a special case that can be applied to

any existing visualization by replicating the visualization while changing the

slice in

6.3 Data Set Index

We introduce an index of public data sets characterizing their data cube

structure in terms of dimension and measure coverage. Figure 15 shows a

preliminary index of public data sets showing data cube structure only in

terms of dimensions, levels, and measures. Once data sets are imported into

our framework, the construction of this index can be automated. Additional

detail will be included such as the members covered for each dimension. This

index can be used in conjunction with our visualization taxonomy to match

data sets (and combinations thereof) with approproate visual representa-

tions.

6.4 Prototypes

As a first prototype, I implemented a timeline visualization of the United

Nations Population Estimates data set (see figure 16). To create this visu-

alization, I manually cleaned the data originally made available as an Excel
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Data Set Dimensions Measures
UN Population Space (Countries)

Time (Years)
Population

US Census Population Space (US States, US Counties)
Time (Years)

Population

US Bureau of
Labor Statistics
Employment

Space (US States, US Counties)
Time (Years, Quarters, Months)
Industry (NAICS Hierarchy)
Ownership (Private, Government)

Employment
Average Income
Total Wages

UN Millenium
Development Goals

Space (Countries)
Time (Years)

Employment
Literacy
Infant mortality
... many more

CIA World
Factbook

Space (Countries)
Time (Years)

Life Expectancy
Median Age
GDP Per Capita
... many more

CDC Causes of Death Causes of Death (Hierarchy)
Time (Years)

Percentage of Deaths

PEW Global
Religious Landscape

Space (Countries)
Time (Years)
Religion

Population

Figure 15: A preliminary index of public data sets characterizing their data
cube structure in terms of dimension and measure coverage.

file and exported it as a CSV file. D3.js was used to create the timeline

visualization from the CSV file. This example was created in order to fully

understand the steps involved in visualizing a real-world public data set. This

implementation has some aspects that are hard-coded to the specific data set,

however this implementation can serve as a starting point for developing the

generalized data representation and visualization framework incrementally.

As a second prototype, I implemented a stacked area chart of mortality
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Figure 16: A timeline visualization of the United Nations Population Esti-
mates data set. I implemented this visualization using D3.js and data down-
loaded from the United Nations Web site as a first prototype for visualizing
public data.

data downloaded from the Centers for Disease Control, shown in figure 17.

The data originally downloaded CSV (Comma Separated Value) file was not

valid CSV, and had to be manually corrected using a text editor. The table

contained a hierarchy of diseases, and all but the top-level disease categories

were removed manually. Selecting the subtree of causes of death to include in

the visualization is one example of a task that would be automated with our

data representation framework. Next, a JavaScript program was written that

pivoted the table from a format where each column was a year to a format

where each row is a year, making the table usable by D3.js. This table

contained an entry for “all causes”, which was removed manually because it

was not appropriate to include visualize.

The mortality data set was published using GitHub Pages using a JSON
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(JavaScript Object Notation [25]) structure compatible with D3.js [14]. AMD

(Asynchronous Module Definition) is a JavaScript pattern for publishing and

consuming reusable modules across domains [90]. The mortality data set was

published as an AMD module containing JSON data rather than as a CSV or

JSON file in order to circumvent the same-origin policy. This allows any Web

page to consume the data set, not only pages within the same domain. This

method of publishing was chosen because it is a simple way to publish data

publicly with zero cost (as GitHub Pages is a free service for Open Source

code), longevity (as GitHub is less likely to go offline in the future than a

private server relying on my bank account), and cross-domain availability

(any page can load the module using an AMD loader such as require.js).

This method of publishing data is also developer-friendly, as most modern

developers are familiar with GitHub.

The mortality stacked area visualization highlights several issues that

will be faced in general when visualzing data that must be addressed by

our proposed data representation framework. The causes of death extracted

from the raw data are sometimes too long to use in the visualization. For

example “Symptoms, signs, and abnormal clinical and laboratory findings,

not elsewhere classified” is too long, and could be simplified to “Unclassi-

fied conditions”. In a data cube model, causes of death would be members

in a dimension hierarchy. The labeling issue encountered in the mortality

visualization indicates a need to support renaming of members for use as

textual elements within visualizations. Since each label refers to a dimension
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member which also may be a generally well-known concept, the labels on the

visualization could, for example, be links to the Wikipedia pages about the

various causes of death, such as Cardiovascular Disease. Also, there are 24

causes of death presented in this visualization using different colors, however

D3 color scales only support up to 20 colors. This issue indicates that it may

be useful to be able to automatically aggregate dimension members together

as a new “Other” category in certain cases, or allow users to manually select

only a subtree of a dimension hierarchy for visualization.

Figure 17: A second pass at a stacked area visualization of Mortality data
from the US Centers for Disease Control. This version has 25 hand-picked
distinguishable colors, a color legend to spread out labels, and shortened
labels in some cases.

Figure 18 shows a sample of the raw data from which the hierarchy of

causes of death must be gleaned. In this data the hierarchy is encoded as

an indented tree. Two different characters are used as indentation charac-
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ters, ASCII codes 32 (space) and 65533 (unknown character). The level of

indentation does not use a consistent number of indentation characters per

indentation level. For example, the indentation level jumps from 0 to 4 to

7 to 10 to 13. I implemented an algorithm that parses the tree structure

from an indented list and outputs the tree in a the JSON tree data structure

compatible with D3.js hierarchical layouts.

Several D3 example were drawn from to implement the cause of death

tree visualization shown in figure 19, which uses the Reingold–Tilford “tidy”

tree layout algorithm [95]. This visualization shows only the hierarchy of

causes of death, but no numerical values associated with each node. Notice

that the two causes of death that show the highest percentages in our stacked

area visualization, Cancer and Cardiovascular Diseases, are the two nodes in

the hierarchy that have the two largest subtrees of categorization.

The node-link tree visualization in figure 19 is an example of a visual-

ization technique that can be applied to visualize dimension hierarchies in

general. This implementation shows the structure of the hierarchy clearly,

but has several drawbacks. Due to the size of the hierarchy, the inclusion of

labels for all nodes necessitates small labels that are only legible at high reso-

lution. When a hierarchy scales above certain thresholds of width and depth,

this visualization becomes unwieldy, and labels must be truncated or omit-

ted entirely. This is one example of scalability issues that must be addressed

when developing general-purpose visualization technique implementations.

The pair of visualizations shown in figure 20 is an example of a visualiza-
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Figure 18: A portion of the raw data from the Centers for Disease Control
encoding the hierarchy of causes of death. The number of indentation char-
acters is shown on the left, and the content of the “Cause” field from the
original CSV file is shown on the right in quotes. Note that there are two
different indentation characters used, and the indentation level is not of a
consistent multiple. This is one example of an unconventional format that
must be parsed into a dimension hierarchy for use within our data represen-
tation framework.

tion dashboard with multiple linked views. The tree view shows a single level

subtree. Black nodes have children, while white nodes do not. Clicking on a

black node causes the tree to drill down into the subtree with the clicked node

as its root. When this interaction is executed, the stacked area visualization

is recomputed to show the new set of disease causes that correspond to the

children of the newly selected tree node. In this way, the tree visualization

provides interactions for drill down and roll up that define the slice of the

data shown in the stacked area chart.
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Figure 19: A tree visualization of data from the Centers for Disease Control
showing the hierarchy of causes of death. This is one example of a visualiza-
tion that shows the structure of a dimension hierarchy.

6.5 Interactive Data Cube Visualization Dashboards

Based on the data cube structure represented by a given visualization, in-

teractions on the visualization can be related back to the data elements rep-

resented. For example, a rectangular selection on a scatter plot determines

a subset of points. The subset of points, by inverting the visual encoding,

defines a subset of the dimension members used to create the points. This

subset of dimension members can be used as input to queries that define other

visualizations or overlays on other visualizations. These kinds of linked in-

teractions can be used for implementing well-known linked interactions such
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Figure 20: Cause of death visualization with two linked views. Navigating
up and down the hierarchy by clicking on nodes changes the slice of data
shown in the stacked area visualization. The top view shows the top-level
causes of death. Clicking on the “Cancer” node yields the view on the bottom
left, which shows types of cancer in the stacked area visualization. Further
drilling down to “Lymphoma, leukemia and myeloma” yields the view on the
bottom right.

as brushing, linking, probing (details on demand) and interactive filtering.

The proposed work includes a characterization of the interaction techniques

available in each of the reusable data visualizations explored. Based on the

interaction techniques available and the types of query fragments they can
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define, a framework for defining interactive visualization dashboards will be

introduced.

Initial prototypes indicate a promising approach for representing and con-

figuring interactive visualization dashboards. The configuration of a visual-

ization dashboard can be represented by a tree structure corresponding to

nested boxes, as well as visualization configuration options. The configura-

tion options may contain references to elements of other visualizations on the

dashboard. This is how, for example, zooming and panning on a map can

be configured to interactively drive the subset of data shown in a timeline.

Figure 21 shows a simple dashboard layout configuration. Figure 22 shows a

more advanced prototype including a map component.

Figure 21: Basic dashboard layout configuration. The nested box layout on
the right is determined by the configuration definition on the left.

The prototype dashboard layout system was used during a summer in-

ternship at Rapid7, a cybersecurity company, to create an interactive visu-

alization dashboard with multiple linked views for analyzing corporate login
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Figure 22: An example dashboard layout configuration with customized ele-
ments.

activity (see figure 23). Technologies used for visualization include D3.js, a

visualization framework that uses SVG, and Leaflet.js, a framework for ge-

ographic maps. The map shows where users have logged into the network,

aggregated geographically using the Leaflet MarkerCluster plugin and visu-

alized using D3’s Pie Chart layout. Black represents successful logins and

blue represents failed logins. This industry application of our dashboard

layout framework demonstrates its capability to define dashboards with mul-

tiple linked views. This framework has been released as Open Source and is

available at github.com/curran/dashboardScaffold.

60



Figure 23: Our open source dashboard configuration framework in use in
industry. This dashboard shows corporate login data, and is integrated into
the Rapid7 product called UserInsight.

7 Plan of Action

In order to complete the proposed dissertation project, the following tasks

will be completed:

• Introduce and refine a data representation framework consisting of

novel algorithms and data structures capable of representing, integrat-

ing and querying multiple data cubes for the purpose of visualization.

• Survey a substantial sample of public data sets and characterize them

in terms of data access mechanisms (user interfaces, data formats and

data delivery protocols) and their coverage over universal dimensions
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and measures.

• Survey a substantial sample of visualization techniques and charac-

terize them in terms of the data cube structure they are capable of

representing and the interactions they afford.

• Develop a conceptual framework for composing interactive data cube

visualizations into dashboards with multiple linked views.

• For several of the public data sets surveyed, load the data into a proof-

of-concept implementation of the data representation framework that

uses Web technologies.

• For several of the visualization techniques surveyed, implement the

visualization techniques in a generic manner, building on the novel

data structures and algorithms introduced for data cube integration.

• Use the generalized techniques implemented to visualize the data sets

imported into the framework.

• Generate an interactive visualization dashboard with multiple linked

views that demonstrates using interactions in one visualization to define

the slice of the data shown in another.
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8 Expected Contributions

In summary, the expected contributions of this dissertation include the fol-

lowing:

• Novel data structures and algorithms for data cube integration. Exist-

ing formats, protocols and models only consider the case of homoge-

neous data cubes computed from a single source of relational data, and

do not handle the case of integrating many pre-computed data cubes

from multiple sources. Data integration has been well studied for re-

lational data, but data integration methods have not been applied to

OLAP cubes, which present unique challenges including management

of dimension hierarchies and measures that are “universal”, or shared

by many data sources.

• A conceptual framework that links the integrated data cube structure

with existing data visualization theory and techniques. Much work has

been done concerning “Visual OLAP” [82], however the visualization

approaches for OLAP cubes have not been extended to handle the rich

heterogeneous structure introduced by integrating many data cubes

from multiple sources.

• A framework for defining visualization dashboards with multiple linked

views for interactively exploring integrated data cubes. Interactions be-

tween multiple views for OLAP cubes have been considered, but our

63



proposed integrated data cube structure affords a richer set of interac-

tions that goes beyond traditional OLAP operations such as drill-down,

roll-up, slice and dice.

These contributions will advance the field of computing and data visual-

ization by enabling the development of tools for integrating and visualizing

heterogeneous data sets in ways never before possible.
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a framework for industry and business exploitation–what is needed
for the adoption of the semantic web from the market and industry.
International Journal of Knowledge and Learning, 4(1):93–108, 2008.

[75] Fadi Maali, Richard Cyganiak, and Vassilios Peristeras. A publishing
pipeline for linked government data. In The Semantic Web: Research
and Applications, pages 778–792. Springer, 2012.

[76] Jock Mackinlay. Automating the design of graphical presentations of re-
lational information. ACM Transactions on Graphics (TOG), 5(2):110–
141, 1986.

[77] Jayant Madhavan, Philip A Bernstein, and Erhard Rahm. Generic
schema matching with cupid. In VLDB, volume 1, pages 49–58, 2001.

[78] Jayant Madhavan, S Jeffery, Shirley Cohen, X Dong, David Ko, Cong
Yu, and Alon Halevy. Web-scale data integration: You can only afford
to pay as you go. In Proceedings of CIDR, pages 342–350, 2007.

[79] Andreas S Maniatis, Panos Vassiliadis, Spiros Skiadopoulos, and Yan-
nis Vassiliou. Advanced visualization for olap. In Proceedings of the 6th
ACM international workshop on Data warehousing and OLAP, pages
9–16. ACM, 2003.

[80] Svetlana Mansmann and Marc H Scholl. Extending visual OLAP for
handling irregular dimensional hierarchies. Springer, 2006.

71



[81] Svetlana Mansmann and Marc H Scholl. Exploring olap aggregates
with hierarchical visualization techniques. In Proceedings of the 2007
ACM symposium on Applied computing, pages 1067–1073. ACM, 2007.

[82] Svetlana Mansmann and Marc H Scholl. Visual olap: A new paradigm
for exploring multidimensional aggregates. In Proc. of IADIS Int’l
Conf. on Computer Graphics and Visualization (CGV), pages 59–66,
2008.

[83] Kouichi Matsuda and Rodger Lea. WebGL programming guide: in-
teractive 3D graphics programming with WebGL. Pearson Education,
2013.

[84] Tova Milo and Sagit Zohar. Using schema matching to simplify hetero-
geneous data translation. In VLDB, volume 98, pages 24–27. Citeseer,
1998.

[85] United Nations. Millenium development goals indicators; country level
data. http://unstats.un.org/unsd/mdg/Data.aspx, February 2014.

[86] United Nations. World population prospects: The 2012 revi-
sion. http://esa.un.org/unpd/wpp/Excel-Data/population.htm,
February 2014.

[87] Natalya F Noy. Semantic integration: a survey of ontology-based ap-
proaches. ACM Sigmod Record, 33(4):65–70, 2004.

[88] Natalya F Noy. Ontology mapping. In Handbook on ontologies, pages
573–590. Springer, 2009.

[89] Natalya F Noy and Mark A Musen. The prompt suite: interactive tools
for ontology merging and mapping. International Journal of Human-
Computer Studies, 59(6):983–1024, 2003.

[90] Addy Osmani. Learning JavaScript Design Patterns. ” O’Reilly Media,
Inc.”, 2012.

[91] William Playfair. Commercial and political atlas: Representing, by
copper-plate charts, the progress of the commerce, revenues, expendi-
ture, and debts of england, during the whole of the eighteenth century.
London: Corry, 1786.

72



[92] Bastian Quilitz and Ulf Leser. Querying distributed rdf data sources
with sparql. In The Semantic Web: Research and Applications, pages
524–538. Springer, 2008.

[93] Erhard Rahm and Philip A Bernstein. A survey of approaches to au-
tomatic schema matching. the VLDB Journal, 10(4):334–350, 2001.

[94] Raghu Ramakrishnan and Johannes Gehrke. Database management
systems. Osborne/McGraw-Hill, 2000.

[95] Edward M Reingold and John S. Tilford. Tidier drawings of trees.
Software Engineering, IEEE Transactions on, (2):223–228, 1981.
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